Network pharmacology-based identification of protective mechanism of Panax Notoginseng Saponins on aspirin induced gastrointestinal injury

2018 ◽  
Vol 105 ◽  
pp. 159-166 ◽  
Author(s):  
Baochen Zhu ◽  
Wantong Zhang ◽  
Yang Lu ◽  
Shaonan Hu ◽  
Rui Gao ◽  
...  
2014 ◽  
Vol 70 (3) ◽  
pp. 1719-1724 ◽  
Author(s):  
Huai-Zheng Liu ◽  
Zuo-Liang Liu ◽  
Shang-Ping Zhao ◽  
Chuan-Zheng Sun ◽  
Ming-Shi Yang

Author(s):  
Weijie Xie ◽  
Xiangbao Meng ◽  
Yadong Zhai ◽  
Ping Zhou ◽  
Tianyuan Ye ◽  
...  

Panax notoginseng, as traditional Chinese medicine, has a long history of high clinical value, such as anti-inflammatory, anti-oxidation, inhibition of platelet aggregation, regulation of blood glucose and blood pressure, inhibition of neuronal apoptosis and neuronal protection, and its main ingredients are Panax notoginseng saponins (PNS). Currently, Panax notoginseng may improve mental function, have anti-insomnia and anti-depression effects, alleviate anxiety, and decrease neural network excitation. However, the underlying effects and the mechanisms of Panax notoginseng and its containing chemical constituents (PNS) on these depression-related or anxiety-related diseases has not been completely established. This review summarized the antidepressant or anxiolytic effects and mechanisms of PNS, and analyzed network targets of antidepressant or anxiolytic actions with network pharmacology tools to provide directions and references for further pharmacological studies and new ideas for clinical treatment of nervous system diseases and drug studies and development.


2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Cong Wang ◽  
Hao Chen ◽  
Shi-tang Ma ◽  
Bin-bin Mao ◽  
Yu Chen ◽  
...  

Background. Panax notoginseng saponins (PNS) have been deemed effective herb compounds for treating ischaemic stroke (IS) and improving the quality of life of IS patients. This study aimed to investigate the underlying mechanisms of PNS in the treatment of IS based on network pharmacology. Methods. PNS were identified from the Traditional Chinese Medicine System Pharmacology (TCMSP) database, and their possible targets were predicted using the PharmMapper database. IS-related targets were identified from the GeneCards database, OMIM database, and DisGeNET database. A herb-compound-target-disease network was constructed using Cytoscape, and protein-protein interaction (PPI) networks were established with STRING. GO enrichment and KEGG pathway analysis were performed using DAVID. The binding of the compounds and key targets was validated by molecular docking studies using AutoDock Vina. The neuroprotective effect of TFCJ was substantiated in terms of oxidative stress (superoxide dismutase, glutathione peroxidase, catalase, and malondialdehyde) and the levels of IGF1/PI3K/Akt pathway proteins. Results. A total of 375 PNS targets and 5111 IS-related targets were identified. Among these targets, 241 were common to PNS, and IS network analysis showed that MAPK1, AKT1, PIK3R1, SRC, MAPK8, EGFR, IGF1, HRAS, RHOA, and HSP90AA1 are key targets of PNS against IS. Furthermore, GO and KEGG enrichment analysis indicated that PNS probably exert therapeutic effects against IS by regulating many pathways, such as the Ras, oestrogen, FoxO, prolactin, Rap1, PI3K-Akt, insulin, PPAR, and thyroid hormone signalling pathways. Molecular docking studies further corroborated the experimental results.The network pharmacology results were further verified by molecular docking and in vivo experiments. Conclusions. The ameliorative effects of PNS against IS were predicted to be associated with the regulation of the IGF1-PI3K-Akt signalling pathway. Ginsenoside Re and ginsenoside Rb1 may play an important role in the treatment of IS.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Yixuan Jiang ◽  
Shanliang Li ◽  
Xiaoqin Xie ◽  
Hemei Li ◽  
Panling Huang ◽  
...  

Background. Panax notoginseng saponins (PNS) have been used for neurodegenerative disorders such as cerebral ischemia and Alzheimer’s disease (AD). Although increasing evidences show the neuron protective effects of PNS, the vital compounds and their functional targets remain elusive. To explore the potential functional ingredients of PNS for the AD treatment and their molecular mechanisms, an in vitro neuron injured model induced by Aβ was investigated, and the potential mechanism was predicted by network pharmacology approach and validated by molecular biology methods. Methods. Network pharmacology approach was used to reveal the relationship between ingredient-target disease and function-pathway of PNS on the treatment of AD. The active ingredients of PNS were collected from TCMSP, PubChem database, and literature mining in PubMed database. DrugBank and GeneCards database were used to predict potential targets for AD. The STRING database was performed to reveal enrichment of these target proteins, protein-protein interactions, and related pathways. Networks were visualized by utilizing Cytoscape software. The enrichment analysis was performed by the DAVID database. Finally, neuroprotective effect and predictive mechanism of PNS were investigated in an in vitro AD model established by Aβ25–35-treated PC12 cells. Results. An ingredient-target disease and function-pathway network demonstrated that 38 active ingredients were derived from PNS modulated 364 common targets shared by PNS and AD. GO and KEGG analysis, further clustering analysis, showed that mTOR signaling targets were associated with the neuroprotective effects of PNS. In Aβ-treated PC12 cells, PNS treatment improved neuroprotective effect, including mTOR inhibition and autophagy activation. Conclusions. Collectively, the protective effects of PNS on AD-neuron injury are related to the inhibition of mTOR and autophagy activation.


Author(s):  
Zhiyong Zhou ◽  
Menghan He ◽  
Qingqing Zhao ◽  
Dongfan Wang ◽  
Changcheng Zhang ◽  
...  

Introduction:: Microglia-mediated inflammatory responses play a crucial role in aging-related neurodegenerative diseases. The TXNIP/NLRP3 pathway is a key pathway leading to microglial activation. Panax notoginseng saponins (PNS) have been widely used for the treatment of stroke in China. Objective:: This study evaluates the anti-neuroinflammatory effect of PNS and investigates the mechanism via TXNIPmediated NLRP3 inflammasome activation in aging rats. Materials and Methods:: Eighteen-month-old Sprague-Dawley rats were randomly divided into the aging control group and PNS treated groups (n=15 each group). For PNS-treated groups, rats were administrated food with PNS at the doses of 10 mg/kg and 30 mg/kg for consecutive 6 months until they were 24-month old. Rats from the aging control group were given the same food without PNS. Two-month-old rats were purchased and given the same food until 6-month old as the adult control group (n = 15). Then, the cortex and hippocampus were rapidly harvested and deposited. H&E staining was used to assess histo-morphological changes. Western blotting was carried out to detect the protein expression. Immunofluorescence was employed to measure the co-localization of NLRP3, TXNIP and Iba-1. In vitro model was established by LPS+ATP coincubation in the BV2 microglia cell line. Results:: Aging rats exhibited increased activation of microglia, accompanied by a high level of IL-1β expression. Meanwhile, aging rats showed enhanced protein expression of TXNIP and NLRP3 related molecules, which co-localized with microglia. PNS treatment effectively reduced the number of degenerated neurons and reversed the activation of the TXNIP/NLRP3 inflammatory pathway. In vitro results showed that PNS up to 100 μg / ml had no significant toxicity on BV2 microglia. Discussion:: PNS (25, 50 μg/ml) effectively reduced the inflammatory response induced by LPS and ATP co-stimulation, thus inhibiting the expression of TXNIP/NLRP3 pathway-related proteins. Conclusion:: PNS treatment improved aging-related neuronal damage through inhibiting TXNIP mediated NLRP3 inflammasome activation, which provided a potential target for the treatment of inflammatory-related neurodegenerative diseases.


Author(s):  
Li-Chao Yao ◽  
Lun Wu ◽  
Wei Wang ◽  
Lu-Lu Zhai ◽  
Lin Ye ◽  
...  

Background:: Panax Notoginseng Saponins (PNS) is used as traditional Chinese medicine for ischemic stroke and cardiovascular disease, it has been proven to possess anticancer activity recently. Objective:: In this study, we aimed to explore the anticancer curative effect and potential mechanisms of PNS in pancreatic cancer cells. Methods:: Pancreatic cancer Miapaca2 and PANC-1 cells were treated with PNS and Gemcitabine (Gem), respectively. Then the cell viability was assessed by CCK-8 assay, cell proliferation was tested by colony formation assay and EdU cell proliferation assay, cell migration and invasiveness were tested by wound healing assay and transwell assay respectively, and cell apoptosis was detected by flow cytometry. Finally, we detected the expression levels of proteins related to migration, apoptosis and autophagy through Western blotting. Results:: PNS not only inhibited the proliferation, migration, invasion and autophagy of Miapaca2 and PANC-1 cells, but also induced apoptosis and promoted chemosensitivity of pancreatic cancer cells to Gem. Conclusion:: PNS may exhibit cytotoxicity and increase chemosensitivity of pancreatic cancer cells to Gem by inhibiting autophagy and inducing apoptosis, providing a new strategy and potential treatment option for pancreatic cancer.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Peiqi Zhu ◽  
Weidong Jiang ◽  
Shixi He ◽  
Tao Zhang ◽  
Fengchun Liao ◽  
...  

Abstract Background Distraction osteogenesis (DO) is an effective treatment in craniomaxillofacial surgery. However, the issue of sufficient blood supply at the regeneration tissue has limited its wide application. Panax notoginseng saponins (PNS) is a Traditional Chinese Medicine that is commonly used to treat a range of angiogenic diseases. However, the mechanisms whereby PNS alters angiogenesis in endothelial progenitor cells (EPCs) have yet to be clarified. Methods EPCs were identified by immunofluorescence, confirmed by their uptake of fluorescently labeled Dil-ac-LDL and FITC-UEA-1. EPCs were treated with different concentrations of PNS, and the effects of PNS on cell proliferation were measured on the optimal concentration of PNS determined. The effects of PNS on angiogenesis and migration, angiogenic cytokines mRNA expression and the proteins of the Wnt pathway were investigated. Then knocked down β-catenin in EPCs and treated with the optimum concentrational PNS, their angiogenic potential was evaluated in tube formation and migration assays. In addition, the expression of cytokines associated with angiogenesis and Wnt/β-catenin was then assessed via WB and RT-qPCR. Results We were able to determine the optimal concentration of PNS in the promotion of cell proliferation, tube formation, and migration to be 6.25 mg/L. PNS treatment increased the mRNA levels of VEGF, bFGF, VE-Cadherin, WNT3a, LRP5, β-catenin, and TCF4. After knocked down β-catenin expression, we found that PNS could sufficient to partially reverse the suppression of EPC angiogenesis. Conclusions Overall, 6.25 mg/L PNS can promote EPC angiogenesis via Wnt/β-catenin signaling pathway activation.


Sign in / Sign up

Export Citation Format

Share Document