scholarly journals Binding Mechanisms Between Laser-Welded Polyamide-6.6 and Native Aluminum Oxide

ACS Omega ◽  
2021 ◽  
Author(s):  
Pierre Hirchenhahn ◽  
Adham Al-Sayyad ◽  
Julien Bardon ◽  
Peter Plapper ◽  
Laurent Houssiau
2019 ◽  
Author(s):  
Prasanth Babu Ganta ◽  
Oliver Kühn ◽  
Ashour Ahmed

The phosphorus (P) immobilization and thus its availability for plants are mainly affected by the strong interaction of phosphates with soil components especially soil mineral surfaces. Related reactions have been studied extensively via sorption experiments especially by carrying out adsorption of ortho-phosphate onto Fe-oxide surfaces. But a molecular-level understanding for the P-binding mechanisms at the mineral-water interface is still lacking, especially for forest eco-systems. Therefore, the current contribution provides an investigation of the molecular binding mechanisms for two abundant phosphates in forest soils, inositol hexaphosphate (IHP) and glycerolphosphate (GP), at the diaspore mineral surface. Here a hybrid electrostatic embedding quantum mechanics/molecular mechanics (QM/MM) based molecular dynamics simulation has been applied to explore the diaspore-IHP/GP-water interactions. The results provide evidence for the formation of different P-diaspore binding motifs involving monodentate (M) and bidentate (B) for GP and two (2M) as well as three (3M) monodentate for IHP. The interaction energy results indicated the abundance of the GP B motif compared to the M one. The IHP 3M motif has a higher total interaction energy compared to its 2M motif, but exhibits a lower interaction energy per bond. Compared to GP, IHP exhibited stronger interaction with the surface as well as with water. Water was found to play an important role in controlling these diaspore-IHP/GP-water interactions. The interfacial water molecules form moderately strong H-bonds (HBs) with GP and IHP as well as with the diaspore surface. For all the diaspore-IHP/GP-water complexes, the interaction of water with diaspore exceeds that with the studied phosphates. Furthermore, some water molecules form covalent bonds with diaspore Al atoms while others dissociate at the surface to protons and hydroxyl groups leading to proton transfer processes. Finally, the current results confirm previous experimental conclusions indicating the importance of the number of phosphate groups, HBs, and proton transfers in controlling the P-binding at soil mineral surfaces.


2020 ◽  
pp. 260-266
Author(s):  
V.E. Arkhipov ◽  
T.I. Murav’eva ◽  
M.S. Pugachev ◽  
O.O. Shcherbakova

The problems of changes in the coating structure depending on the composition of the sprayed mechanical mixture using copper particles and mixture of copper and zinc particles (" brass") and the effect of structural factors on the tribological properties of the deposited metal layer are considered. The results of X-ray structural, phase, chemical and durometric analyzes, as well as tribological testing of coatings are presented. It is found that structure with hardness of ≈102.7 HV is formed in the coating from mechanical mixture of particles of copper and aluminum oxide (corundum). Numerous pores are observed in the structure of the deposited metal layer, the main size of which does not exceed 2 μm. In the coating from mechanical mixture of particles copper, zinc and aluminum oxide (corundum), structure is formed based on copper with hardness of ≈106.5 HV, zinc — ≈49.7 HV, intermetallic compounds (γ- and ε-phases) — ≈168.7 HV, the mass fraction of which is 62.0, 7.9 and 24.2 %, respectively. Both coatings can be used in sliding friction pairs.


Sign in / Sign up

Export Citation Format

Share Document