scholarly journals Field-Scale Demonstration of PFAS Leachability Following In Situ Soil Stabilization

ACS Omega ◽  
2021 ◽  
Author(s):  
Jeffrey T. McDonough ◽  
Richard H. Anderson ◽  
Johnsie R. Lang ◽  
David Liles ◽  
Kasey Matteson ◽  
...  
1994 ◽  
Vol 29 (10) ◽  
pp. 1251-1274 ◽  
Author(s):  
Céser Gómez-Lahoz ◽  
James M. Rodríguez-Maroto ◽  
David J. Wilson∗
Keyword(s):  

2022 ◽  
Author(s):  
Ziyan Li ◽  
Derek Elsworth ◽  
Chaoyi Wang

Abstract Fracturing controls rates of mass, chemical and energy cycling within the crust. We use observed locations and magnitudes of microearthquakes (MEQs) to illuminate the evolving architecture of fractures reactivated and created in the otherwise opaque subsurface. We quantitatively link seismic moments of laboratory MEQs to the creation of porosity and permeability at field scale. MEQ magnitudes scale to the slipping patch size of remanent fractures reactivated in shear - with scale-invariant roughnesses defining permeability evolution across nine decades of spatial volumes – from centimeter to decameter scale. This physics-inspired seismicity-permeability linkage enables hybrid machine learning (ML) to constrain in-situ permeability evolution at verifiable field-scales (~10 m). The ML model is trained on early injection and MEQ data to predict the dynamic evolution of permeability from MEQ magnitudes and locations, alone. The resulting permeability maps define and quantify flow paths verified against ground truths of permeability.


Geoderma ◽  
2012 ◽  
Vol 170 ◽  
pp. 195-205 ◽  
Author(s):  
Gary C. Heathman ◽  
Michael H. Cosh ◽  
Eunjin Han ◽  
Thomas J. Jackson ◽  
Lynn McKee ◽  
...  

SPE Journal ◽  
2019 ◽  
Vol 24 (06) ◽  
pp. 2711-2730
Author(s):  
A.. Perez–Perez ◽  
M.. Mujica Chacín ◽  
I.. Bogdanov ◽  
A.. Brisset ◽  
O.. Garnier

Summary In–situ upgrading (IU) is a promising method of improved viscous– and heavy–oil recovery. The IU process implies a reservoir heating up and exposure to a temperature higher than 300°C for a time period long enough to promote a series of chemical reactions. The pyrolysis reactions produce lighter oleic and gaseous components, while a solid residue remains underground. In this work, we developed a numerical model of IU using laboratory experience (kinetics measurements and core experiments) and validated the results by applying our model to an IU field–scale test published in the literature. Finally, we studied different operational conditions in a search for energy–efficient configurations. In this work, two types of IU experimental data are used from two vertical–tube experiments with Canadian bitumen cores (0.15 and 0.69 m). A general IU numerical model for the different experimental setups has been developed and compared with experimental data, using a commercial reservoir–simulator framework. This model is capable of representing the phase distribution of pseudocomponents, the thermal decomposition reactions of bitumen fractions, and the generation of gases and residue (solid) under thermal cracking conditions. Simulation results for the cores exposed to a temperature of 380°C and production pressure of 15 bar have shown that oil production (per pseudocomponent) and oil–sample quality were well–predicted by the model. Some differences in gas production and total solid residue were observed with respect to laboratory measurements. Computer–assisted history matching was performed using an uncertainty–analysis tool with the most–important model parameters. To better understand IU field–scale test results, the Shell Viking pilot (Peace River) was modeled and analyzed with the proposed IU model. The appropriate gridblock size was determined and the calculation time was reduced using the adaptive mesh–refinement (AMR) technique. The quality of products, the recovery efficiency, and the energy expenses obtained with our model were in good agreement with the field test results. In addition, the conversion results (upgraded oil, gas, and solid residue) from the experiments were compared with those obtained in the field test. Additional analysis was performed to identify energy–efficient configurations and to understand the role of some key variables (e.g., heating period and rate and the production pressure) in the global IU upgrading performance. We discuss these results, which illustrate and quantify the interplay between energy efficiency and productivity indicators.


2021 ◽  
Vol 237 ◽  
pp. 103741 ◽  
Author(s):  
Sadjad Mohammadian ◽  
Beate Krok ◽  
Andreas Fritzsche ◽  
Carlo Bianco ◽  
Tiziana Tosco ◽  
...  

SPE Journal ◽  
2018 ◽  
Vol 23 (05) ◽  
pp. 1648-1668 ◽  
Author(s):  
HanYi Wang ◽  
Mukul M. Sharma

Summary A new method is proposed to estimate the compliance and conductivity of induced unpropped fractures as a function of the effective stress acting on the fracture from diagnostic-fracture-injection-test (DFIT) data. A hydraulic-fracture resistance to displacement and closure is described by its compliance (or stiffness). Fracture compliance is closely related to the elastic, failure, and hydraulic properties of the rock. Quantifying fracture compliance and fracture conductivity under in-situ conditions is crucial in many Earth-science and engineering applications but is very difficult to achieve. Even though laboratory experiments are used often to measure fracture compliance and conductivity, the measurement results are influenced strongly by how the fracture is created, the specific rock sample obtained, and the degree to which it is preserved. As such, the results may not be representative of field-scale fractures. During the past 2 decades, the DFIT has evolved into a commonly used and reliable technique to obtain in-situ stresses, fluid-leakoff parameters, and formation permeability. The pressure-decline response across the entire duration of a DFIT reflects the process of fracture closure and reservoir-flow capacity. As such, it is possible to use these data to quantify changes in fracture conductivity as a function of stress. In this paper, we present a single, coherent mathematical framework to accomplish this. We show how each factor affects the pressure-decline response, and the effects of previously overlooked coupled mechanisms are examined and discussed. Synthetic and field-case studies are presented to illustrate the method. Most importantly, a new specialized plot (normalized system-stiffness plot) is proposed, which not only provides clear evidence of the existence of a residual fracture width as a fracture is closing during a DFIT, but also allows us to estimate fracture-compliance (or stiffness) evolution, and infer unpropped fracture conductivity using only DFIT pressure and time data alone. It is recommended that the normalized system-stiffness plot (NS plot) be used as a standard practice to complement the G-function or square-root-of-time plot and log-log plot because it provides very valuable information on fracture-closure behavior and the properties of fracture-surface roughness at a field-scale, information that cannot be obtained by any other means.


2020 ◽  
pp. 116009
Author(s):  
Shih-Hao Jien ◽  
Yu-Lin Kuo ◽  
Chien-Sen Liao ◽  
Yu-Ting Wu ◽  
Avanthi Deshani Igalavithana ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document