scholarly journals Expression, Purification, and Refolding of Chikungunya Virus Full-Length Envelope E2 Protein along with B-Cell and T-Cell Epitope Analyses Using Immuno-Informatics Approaches

ACS Omega ◽  
2022 ◽  
Author(s):  
Manisha Shukla ◽  
Pankaj Chandley ◽  
Suman Tapryal ◽  
Narendra Kumar ◽  
Sulakshana P. Mukherjee ◽  
...  
2020 ◽  
Vol 21 (4) ◽  
pp. 325-340 ◽  
Author(s):  
Saeed Anwar ◽  
Jarin T. Mourosi ◽  
Md. Fahim Khan ◽  
Mohammad J. Hosen

Background: Chikungunya is an arthropod-borne viral disease characterized by abrupt onset of fever frequently accompanied by joint pain, which has been identified in over 60 countries in Africa, the Americas, Asia, and Europe. Methods: Regardless of the availability of molecular knowledge of this virus, no definite vaccine or other remedial agents have been developed yet. In the present study, a combination of B-cell and T-cell epitope predictions, followed by molecular docking simulation approach has been carried out to design a potential epitope-based peptide vaccine, which can trigger a critical immune response against the viral infections. Results: A total of 52 sequences of E1 glycoprotein from the previously reported isolates of Chikungunya outbreaks were retrieved and examined through in silico methods to identify a potential B-cell and T-cell epitope. From the two separate epitope prediction servers, five potential B-cell epitopes were selected, among them “NTQLSEAHVEKS” was found highly conserved across strains and manifests high antigenicity with surface accessibility, flexibility, and hydrophilicity. Similarly, two highly conserved, non-allergenic, non-cytotoxic putative T-cell epitopes having maximum population coverage were screened to bind with the HLA-C 12*03 molecule. Molecular docking simulation revealed potential T-cell based epitope “KTEFASAYR” as a vaccine candidate for this virus. Conclusion: A combination of these B-cell and T-cell epitope-based vaccine can open up a new skyline with broader therapeutic application against Chikungunya virus with further experimental and clinical investigation.


2018 ◽  
Vol 49 (4) ◽  
pp. 1600-1614 ◽  
Author(s):  
Shudong He ◽  
Jinlong Zhao ◽  
Walid Elfalleh ◽  
Mohamed Jemaà ◽  
Hanju  Sun ◽  
...  

Background/Aims: The incidence of lectin allergic disease is increasing in recent decades, and definitive treatment is still lacking. Identification of B and T-cell epitopes of allergen will be useful in understanding the allergen antibody responses as well as aiding in the development of new diagnostics and therapy regimens for lectin poisoning. In the current study, we mainly addressed these questions. Methods: Three-dimensional structure of the lectin from black turtle bean (Phaseolus vulgaris L.) was modeled using the structural template of Phytohemagglutinin from P. vulgaris (PHA-E, PDB ID: 3wcs.1.A) with high identity. The B and T-cell epitopes were screened and identified by immunoinformatics and subsequently validated by ELISA, lymphocyte proliferation and cytokine profile analyses. Results: Seven potential B-cell epitopes (B1 to B7) were identified by sequence and structure based methods, while three T-cell epitopes (T1 to T3) were identified by the predictions of binding score and inhibitory concentration. The epitope peptides were synthesized. Significant IgE binding capability was found in B-cell epitopes (B2, B5, B6 and B7) and T2 (a cryptic B-cell epitope). T1 and T2 induced significant lymphoproliferation, and the release of IL-4 and IL-5 cytokine confirmed the validity of T-cell epitope prediction. Abundant hydrophobic amino acids were found in B-cell epitope and T-cell epitope regions by amino acid analysis. Positively charged amino acids, such as His residue, might be more favored for B-cell epitope. Conclusion: The present approach can be applied for the identification of epitopes in novel allergen proteins and thus for designing diagnostics and therapies in lectin allergy.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 2054-2054
Author(s):  
J. Diamond Don ◽  
Wendi Zhou ◽  
Tumul Srivastava ◽  
Ravindra Rawal ◽  
Katharine Hagan ◽  
...  

Abstract Abstract 2054 Poster Board II-31 The serine proteinases, human neutrophil elastase (HNE) and proteinase 3 (PR3) are degradative enzymes stored in cytoplasmic azurophilic granules of neutrophils. Both proteins are aberrantly expressed in human myeloid leukemias. Over-expression of PR3 is important in maintaining a leukemia phenotype, while HNE may suppress hematopoietic progenitors. PR3 and HNE contain a conserved nonameric HLA-A*02 restricted T-cell epitope called PR1. The presence of PR1-specific CTL has been correlated with molecular remission in CML. A PR1 nonameric peptide vaccine has been evaluated clinically, with promising results. A limitation of the PR1 peptide vaccine is its restriction to patients with the HLA-A*02 allele. A vaccine comprising a larger portion of the PR3 and/or HNE protein and capable of inducing broader T-cell responses restricted by a wider range of HLA alleles is a potential alternative. We have generated numerous recombinant vaccinia viruses (rVV) expressing forms of PR3 and HNE and have evaluated CTL responses in an HLA-A*02 transgenic mouse model (Tg-A2): (1) rVV-EGFP-PR3, contains a gene encoding EGFP fused to human PR3 lacking the N-terminal signal peptide, while retaining both pro-dipeptide and C-terminal propeptide sequences; (2) EGFP fused to C-terminal truncated PR3 (rVV-EGFP-PR3-T) deleted of PR2 CTL epitope, but maintaining PR1 and; (3) rVV-EGFP-HNE. Tg-A2 were immunized with rVV-EGFP-PR3, and 2 weeks later immune splenocytes were expanded by in vitrostimulation (IVS) with syngeneic naïve mouse splenocytes loaded with an overlapping PR3 peptide library. Intracellular cytokine (ICC) assays using a PR3 peptide library or PR1 9-mer epitope peptide demonstrated a robust PR3-specific CD8+ T-cell response, surprisingly without a detectable response to the PR1 peptide. However, PR2, a decamer, is immunodominant in mice following this immunization. This result was unexpected, since the PR2 epitope was identified by computer prediction as a potential HLA-A*02-restricted epitope within PR3 but, unlike the HLA-A*02-restricted 9-mer epitope PR1, has not been extensively studied as a T-cell epitope in humans. We tested whether the immunodominant PR2-specific response in rVV-EGFP-PR3 immunized mice is also found when a naturally-processed PR3 protein is used as the stimulating antigen, expressed from the cell line K562-A2-PR3, a derivative of K562-A2 endogenously expressing human PR3. Splenocytes from mice immunized with rVV-EGFP-PR3 were expanded by co-culture with irradiated K562-A2-PR3 cells, then tested in ICC assays using PR1 and PR2 CTL epitope peptides. We observed a robust response to PR2 but not PR1. While the PR1 epitope is absolutely conserved between human and murine versions of PR3 and HNE, the PR2 epitope is unique to human PR3, diverging from murine PR3 by 3 amino acids, and by 5 amino acid from human and murine HNE. We speculated that Tg-A2 mice may be tolerant to PR1 due to the presence of this epitope within murine PR3 and HNE, which may account for dominance of PR2-specific responses. To investigate the possibility of inducing PR1-specific CTL in Tg-A2, mice were immunized with rVV-EGFP-HNE, and we detected PR1-specific responses by IVS followed by ICC with the PR1 peptide. These results indicate that tolerance to PR1 can likely be broken by immunization with rVV expressing HNE protein that contains the PR1 epitope. These observations can be explained by either the PR2>PR1 competition hypothesis, or by different amino acid sequences flanking the PR1 epitope in PR3 and HNE proteins affecting processing of the protein to generate the PR1 peptide. To test this question, we used rVV-PR3-T to immunize Tg-A2 mice, then conducted IVS followed by ICC with the PR1 peptide to detect PR1-specific CTL. Results showed that immunization with rVV expressing truncated PR3 reliably induced PR1-specific CTL, unlike immunization with rVV expressing the full-length PR3 antigen. We concluded that PR2 epitope prevented the recognition of PR1. Therefore in Tg-A2 mice, vaccination with poxvirus vaccines expressing PR3 will induce an HLA-A2-restricted CTL response almost entirely focused on PR2, whereas immunization with rVV-HNE will induce PR1-specific CTL. If this were replicated in humans, the majority of PR1-specific CTL detected in CML patients could be derived from HNE rather than PR3 antigen presentation, and that PR2-specific CTL derived from PR3 should be equally frequent as PR1 and likely contribute to clinical GVL and tumor regression. Disclosures: No relevant conflicts of interest to declare.


2004 ◽  
Vol 25 ◽  
pp. S584
Author(s):  
Michael G. Agadjanyan ◽  
Irina Petrushina ◽  
Anahit Ghochikyan ◽  
Vitaly Vasilevko ◽  
Nina Movsesyan ◽  
...  

2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Yu-Min Lin ◽  
Guey-Mei Jow ◽  
Shu-Chi Mu ◽  
Bing-Fang Chen

To control hepatitis B virus (HBV) infection, a universal HBV vaccination program for infants was launched in Taiwan in 1984. The aim of this study was to investigate the role of B-cell and T-cell epitope variations of HBsAg and polymerase in HBV infection in vaccinated children. One hundred sixty-three sera from vaccinated children were enrolled randomly. HBV serum markers, including hepatitis B surface antigen (HBsAg) and antibodies to HBsAg (anti-HBs) and core antigen (anti-HBc), were detected by ELISA. Nucleotide sequences encoding the S and the pre-S regions of HBsAg were analyzed in all HBsAg positive sera. Five children were HBsAg positive. Sequence analysis of S, pre-S, and overlapped polymerase (P) genes showed that HBV isolates of HBsAg-positive vaccinees were variants; no G145R but G145A and other substitutions were found in the “a” determinant. Fifteen, six, and eight amino acid substitutions within B-cell and T-cell epitopes of S, pre-S, and P regions were detected, respectively. Several immune-epitope mutants, such as S45T/A, N131T, I194V, and S207N in S, were detected in all isolates. In conclusion, our results suggested that these naturally occurring immunoepitope mutants, which changed their immunogenicity leading to escape from immune response, might cause HBV infection.


2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
Esther Blanco ◽  
Carolina Cubillos ◽  
Noelia Moreno ◽  
Juan Bárcena ◽  
Beatriz G. de la Torre ◽  
...  

Synthetic peptides incorporating protective B- and T-cell epitopes are candidates for new safer foot-and-mouth disease (FMD) vaccines. We have reported that dendrimeric peptides including four copies of a B-cell epitope (VP1 136 to 154) linked to a T-cell epitope (3A 21 to 35) of FMD virus (FMDV) elicit potent B- and T-cell specific responses and confer protection to viral challenge, while juxtaposition of these epitopes in a linear peptide induces less efficient responses. To assess the relevance of B-cell epitope multivalency, dendrimers bearing two (B2T) or four (B4T) copies of the B-cell epitope from type O FMDV (a widespread circulating serotype) were tested in CD1 mice and showed that multivalency is advantageous over simple B-T-epitope juxtaposition, resulting in efficient induction of neutralizing antibodies and optimal release of IFNγ. Interestingly, the bivalent B2T construction elicited similar or even better B- and T-cell specific responses than tetravalent B4T. In addition, the presence of the T-cell epitope and its orientation were shown to be critical for the immunogenicity of the linear juxtaposed monovalent peptides analyzed in parallel. Taken together, our results provide useful insights for a more accurate design of FMD subunit vaccines.


Vaccine ◽  
1997 ◽  
Vol 15 (16) ◽  
pp. 1761-1766 ◽  
Author(s):  
Patricia A. O'Hern ◽  
Zhi-Guo Liang ◽  
Charanjit S. Bambra ◽  
Erwin Goldberg

1997 ◽  
Vol 10 (3) ◽  
pp. 129-136 ◽  
Author(s):  
SOFIA CASARES ◽  
TEODOR-DORU BRUMEANU ◽  
ADRIAN BOT ◽  
CONSTANTIN A. BONA

Sign in / Sign up

Export Citation Format

Share Document