Chemically Modified Cellulose Filter Paper for Heavy Metal Remediation in Water

2017 ◽  
Vol 5 (2) ◽  
pp. 1965-1973 ◽  
Author(s):  
Martin d’Halluin ◽  
Jordi Rull-Barrull ◽  
Guillaume Bretel ◽  
Christine Labrugère ◽  
Erwan Le Grognec ◽  
...  
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Elham Feiz ◽  
Mojtaba Mahyari ◽  
Hamid Reza Ghaieni ◽  
Saeed Tavangar

AbstractAchieving an efficient catalyst in the ATRP system with a simple design, preparation from available materials, and high recyclability is a significant challenging issue. To attain the goal, herein, we used chitosan (CS)-modified cellulose filter paper (FP) as a green support for the synthesis of dip catalyst. The preparation of this catalyst involved surface treatment of the FP strips by CS coating through a dipping method, which increased the affinity of the substrate for adsorbing copper ions in the next step. The Cu@CS-FP catalyst was prepared without the requirement of any ligands. The synthesized dip-catalyst, in the form of the strips, was employed for the first time in the ATRP reaction of methyl methacrylate to assay catalytic activity. Catalytic insertion/ removal (ON/OFF) experiments were carried out during the polymerization. A reasonable control over the molecular weight with high conversion (68%) and polydispersity index of 1.32 under mild reaction conditions were obtained. Significantly, because of the facile separation of the catalyst, the amount of copper that remained in the polymer was very low (2.7 ppm). Also, the recyclability of the catalyst was investigated for five runs. The conversion in the final run was 64% without a loss of catalyst efficiency.


Author(s):  
Jyotikusum Acharya ◽  
Upendra Kumar ◽  
P. Mahammed Rafi

Heavy metal remediation of aqueous streams is of special concern due to recalcitrant and persistency of heavy metals in environment. Conventional treatment technologies for the removal of these toxic heavy metals are not economical and further generate huge quantity of toxic chemical sludge. Agricultural waste materials being economic and ecofriendly due to their unique biochemical composition, availability in abundance, renewable, low in cost and more efficient are seem to be viable option for heavy metal remediation. The major advantages of biosorption over conventional treatment methods include: low cost, high efficiency, minimization of chemical or biological sludge, regeneration of biosorbents and possibility of metal recovery. It is well known that cellulosic waste materials can be obtained and employed as cheap adsorbents and their performance to remove heavy metal ions can be affected upon chemical treatment. In general, chemically modified plant wastes exhibit higher adsorption capacities than unmodified forms. The functional groups present in agricultural waste biomass viz. acetamido, alcoholic, carbonyl, phenolic, amido, amino, sulphydryl groups etc. Have affinity for heavy metal ions to form metal complexes or chelates. Some of the treated adsorbents show good adsorption capacities for Cd, Cu, Pb, Zn and Ni. Rice husk as a low-value agricultural by-product can be made into sorbent materials which are used in heavy metal removal. The mechanism of biosorption process includes chemisorptions, complexation, adsorption on surface, diffusion through pores and ion exchange etc. Agricultural residues are lignocelluloses substances which contain three main structural components: hemicelluloses, cellulose and lignin. Lignocellulosic materials also contain extractives. Generally, three main components have high molecular weights and contribute much mass, while the extractives is of small molecular size, and available in little quantity, which announce in heavy metal removal.


Polymers ◽  
2019 ◽  
Vol 11 (8) ◽  
pp. 1355
Author(s):  
Yanlin Xia ◽  
Youtian Mo ◽  
Wei Meng ◽  
Xusheng Du ◽  
Chuanguo Ma

Graphene/carbon paper is prepared by pyrolyzing graphene modified cellulose filter paper and directly used as a binder-free electrode to assemble a supercapacitor (SC) with a redox active electrolyte, containing a Fe3+/Fe2+ additive. By the graphene incorporation and the carbonization of the cellulose fibers, both the microstructure and the electrical conductivity of the carbon paper are promoted greatly. The filter paper derived carbon (FPC) electrode exhibits a specific capacitance (Cs) of 2832 F·g−1 in a 1 M H2SO4 + 0.5 M Fe3+/Fe2+ electrolyte at 1 A·g−1, which is about 81 times that in a normal H2SO4 electrolyte. With the modification of graphene, the capacitive performance of the SC is enhanced further and a remarkable Cs of 3396 F·g−1 at 1 A·g−1 is achieved for a graphene modified filter paper carbon (GFPC) electrode, which remains at ~632 F·g−1 at 10 A·g−1. The free standing GFPC electrode also exhibits good cycling stability (93.8% of capacitance retention after 2000 cycles) and an energy density of 118 Wh·kg−1 at a power density of 500.35 W·kg−1, all of which are much higher than those of FPC. These encouraging results suggest that the graphene modification of electrode materials combined with a Fe3+/Fe2+ redox active electrolyte is a prospective measure to fabricate SC with an ultrahigh performance.


2014 ◽  
Vol 6 (18) ◽  
pp. 7374-7383 ◽  
Author(s):  
Charu Tyagi ◽  
Lomas K. Tomar ◽  
Pradeep Kumar ◽  
Viness Pillay ◽  
Harpal Singh

GMA-g-CFP matrix validated for dot-ELISA exhibits specificity and sensitivity comparable to the commercial NC membrane and is relevant for mass screening in field conditions as in epidemiological studies.


Sign in / Sign up

Export Citation Format

Share Document