Preparation and some biochemical properties of neoglycoproteins produced by reductive amination of thioglycosides containing an .omega.-aldehydoaglycon

Biochemistry ◽  
1980 ◽  
Vol 19 (1) ◽  
pp. 156-163 ◽  
Author(s):  
Reiko T. Lee ◽  
Yuan Chuan Lee
2021 ◽  
Author(s):  
Nicholas Turner ◽  
Thomas Thorpe ◽  
James Marshall ◽  
Vanessa Harawa ◽  
Rebecca Ruscoe ◽  
...  

Abstract A major challenge in chemical synthesis is to develop catalytic systems that convert simple molecules to complex high-value products. Often these valuable compounds must be manufactured asymmetrically, as their biochemical properties can differ based on the chirality of the molecule. Of great interest are enantioenriched amine diastereomers, which are prevalent in pharmaceuticals and agrochemicals,1 yet their preparation often relies on low-efficiency multi-step synthesis.2 Herein, we report the discovery and characterisation of a multi-functional biocatalyst, which operates using a previously unreported conjugate reduction-reductive amination mechanism. This enzyme (pIR-120), identified within a metagenomic imine reductase (IRED) collection3 and originating from an unclassified Pseudomonas species, possesses an unusual active site architecture that facilitates an amine-activated conjugate alkene reduction followed by reductive amination. This enzyme enables the coupling of a broad selection of α,β-unsaturated carbonyls with amines for the efficient preparation of enantioenriched amine diastereomers. Moreover, employing a racemic substrate partner or conjugated dienyl-ketone provides a means of controlling additional stereocentres using the single catalyst. Mechanistic and structural studies have been carried out to delineate the order of individual steps catalysed by pIR-120 which have led to a proposal for the overall catalytic cycle. This work shows that the IRED family can serve as a platform for facilitating the discovery of further enzymatic activities for application in synthetic biology and organic synthesis.


1987 ◽  
Vol 26 (05) ◽  
pp. 224-228 ◽  
Author(s):  
Y. Isaka ◽  
H. Etani ◽  
K. Kimura ◽  
S. Yoneda ◽  
T. Kamada ◽  
...  

Tissue-type plasminogen activator (t-PA) which has a high affinity for fibrin in the clot, was labeled with 131I by the iodogen method, and its binding to de-endothelialized lesions in the rabbit was measured to assess the detectability of thrombi. The de-endothelialized lesion was induced in the abdominal aorta with a Fogarty 4F balloon catheter. Two hours after the de-endothelialization, 131I-labeled t-PA (125 ± 46 μCi) was injected intravenously. The initial half-life of the agent in blood (n = 12) was 2.9 ± 0.4 min. The degree of binding of 131I-labeled t-PA to the de-endothelialized lesion was evaluated at 15 min (n = 6) or at 30 min (n = 6) after injection of the agent. In spite of the retention of the biochemical properties of 131I-labeled t-PA and the presence of fibrin deposition at the de-endothelialized lesion, the binding of t-PA to the lesion was not sufficiently strong. Lesion-to-control ratios (cpm/g/cpm/g) were 1.65 ± 0.40 (at 15 min) and 1.39 ± 1.31 (at 30 min), and lesion-to-blood ratios were 1.39 ± 0.32 (at 15 min) and 1.36 ± 0.23 (at 30 min). These results suggest that radiolabeled t-PA may be inappropriate as a radiopharmaceutical for the scintigraphic detection of a pre-existing thrombotic lesion.


2016 ◽  
Vol 3 (1) ◽  
pp. 43-48 ◽  
Author(s):  
V. Patyka ◽  
L. Butsenko ◽  
L. Pasichnyk

Aim. To validate the suitability of commercial API 20E test-system (bioMerieux) for the identifi cation and characterization of facultative gram-negative phytopathogenic bacterial isolates. Methods. Conventional mi- crobiological methods, API 20E test-system (bioMerieux) according to the manufacturer’s instructions. Re- sults. The identifi cation results for Erwinia amylovora, Pectobacterium carotovorum and Pantoea agglome- rans isolates were derived from the conventional and API 20E test systems, which, were in line with the literature data for these species. The API 20E test-system showed high suitability for P. agglomerans isolates identifi cation. Although not all the species of facultatively anaerobic phytopathogenic bacteria may be identi- fi ed using API 20E test-system, its application will surely allow obtaining reliable data about their physiologi- cal and biochemical properties, valuable for identifi cation of bacteria, in the course of 24 h. Conclusions. The results of tests, obtained for investigated species while using API 20E test-system, and those of conventional microbiological methods coincided. The application of API 20E test-system (bioMerieux) ensures fast obtain- ing of important data, which may be used to identify phytopathogenic bacteria of Erwinia, Pectobacterium, Pantoea genera.


2014 ◽  
Vol 25 (3-4) ◽  
pp. 24-33
Author(s):  
O. I. Dzjuba ◽  
M. V. Yatsenko

The article deals with the history of the study and the current state of research of physiological and biochemical properties of the plant genus Sedum that are useful for human and has been used in folk medicine for many years. It was noticed that antioxidant properties of extracts from plants S. sarmentosum, S. sempervivoides, S. takesimense were caused by the presence of phenolic compounds. Methanol extract of plants S. takesimense exhibited strong scavenging activities against 2,2-diphenyl-1-picrylhydrazyl (DPPH) and superoxide radicals as well as significant inhibitory effects on lipid peroxidation and low density lipoprotein (LDL) oxidation induced by a metal ion Cu2+. Various immunomodulatory activities of various fractions of plants extracts (S. dendroideum, S. kamtschaticum, S. sarmentosum, S. telephium) are observed. It was shown that the ethanol extract of S. sarmentosum and it’s fractions suppressed specific antibody and cellular responses to ovalbumin in mice. The methanol extract of plants S. sarmentosum reduced the levels of anti-inflammatory markers, such as volume of exudates, number of polymorphonuclear leukocytes, suppressed nitric oxide synthesis in activated macrophages via suppressed induction of inducible nitric oxide synthase (iNOS). Polysaccharides fractions from plants S. telephium inducing productions of tumor necrosis factor alpha (TNF-α), increasing the intensity of phagocytosis in vitro and in vivo. Methanol extract from the whole part of S. kamtschaticum strongly inhibit PGE2 production from lipopolysaccharide-induced RAW 264.7 cells, a mouse macrophage cell line via modulating activity in gene expression of the enzyme cyclooxygenase-2 (COX-2). The methanol extract of plants S. sarmentosum and the major kaempferol glycosides from S. dendroideum have antinociceptive activity. It was noticed that anti-adipogenic activity of extracts from plants S. kamtschaticum were caused by inhibition of peroxisome-proliferator-activated receptor γ (PPARγ) expression and it’s dependent target genes, such as genes encoding adipocyte protein 2 (аР2), lipoprotein lipase (LPL), adiponectin and CD36. Polysaccharides fractions from S. telephium cause inhibition of cell adhesion of human fibroblast (MRC5) to laminin and fibronectin via interfere with integrin-mediated cell behaviour and they contributed to the role of polysaccharides in cell-matrix interaction. The methanol extract of plants S. sarmentosum exhibited a significant inhibitory activity in the chick embryo chorioallantoic membrane angiogenesis in a dose-dependent manner. The crude alkaloid fraction of S. sarmentosum caused a dose-dependent inhibition of cell proliferation on murine hepatoma cell line BNL CL.2 and human hepatoma cell line HepG2 without necrosis or apoptosis. Alkaloids from plants S. sarmentosum may improve survival of hepatoma patients via the inhibition of excessive growth of tumor cells. Plant’s juices have antiviral activity (S. sarmentosum, S. spurium, S. stahlii). Crude ethanol extract S. praealtum have spermicidal activity of the in mice and a relevant inhibitory effect of aqueous extract on human spermatozoa motility as well as an anti-fertilizing activity in rats. Hepatoprotective triterpenes, e.g., δ-amyrone, 3-epi-δ-amyrin, δ-amyrin and sarmentolin were isolated from S. sarmentosum. 2- and 2,6-substituted piperidine alkaloids (e.g., norsedamine, allosedridine, sedamine, allosedamine) are observed in plants S. acre, which in the presence of data on the use of pyridine and piperidine derivatives for treating neurodegenerative diseases (e.g., Alzheimer's disease), points on the promising research in this area. Taking into account that biologically active compounds are accumulated in the aboveground vegetative organs of plants of Sedum, the prospects of further study of the use of Sedum for the purposes of biotechnology and in the pharmaceutical industry becomes apparent. This work extends the existing views regarding the use of plants Sedum.


2020 ◽  
Author(s):  
Bapurao Bhoge ◽  
Ishu Saraogi

Chemo- and site-specific modifications in oligonucleotides have wide applicability as mechanistic probes in chemical biology. Here we have employed a classical reaction in organic chemistry, reductive amination, to selectively functionalize the N<sup>2</sup>-amine of guanine/2’-deoxyguanine monophosphate. This method specifically modifies guanine in several tested DNA oligonucleotides, while leaving the other bases unaffected. Using this approach, we have successfully incorporated desired handles chemoselectively into DNA oligomers.


2019 ◽  
Author(s):  
Wengong Jin ◽  
Regina Barzilay ◽  
Tommi S Jaakkola

The problem of accelerating drug discovery relies heavily on automatic tools to optimize precursor molecules to afford them with better biochemical properties. Our work in this paper substantially extends prior state-of-the-art on graph-to-graph translation methods for molecular optimization. In particular, we realize coherent multi-resolution representations by interweaving trees over substructures with the atom-level encoding of the original molecular graph. Moreover, our graph decoder is fully autoregressive, and interleaves each step of adding a new substructure with the process of resolving its connectivity to the emerging molecule. We evaluate our model on multiple molecular optimization tasks and show that our model outperforms previous state-of-the-art baselines by a large margin.


Author(s):  
Jack Rowbotham ◽  
Oliver Lenz ◽  
Holly Reeve ◽  
Kylie Vincent

<p></p><p>Chemicals labelled with the heavy hydrogen isotope deuterium (<sup>2</sup>H) have long been used in chemical and biochemical mechanistic studies, spectroscopy, and as analytical tracers. More recently, demonstration of selectively deuterated drug candidates that exhibit advantageous pharmacological traits has spurred innovations in metal-catalysed <sup>2</sup>H insertion at targeted sites, but asymmetric deuteration remains a key challenge. Here we demonstrate an easy-to-implement biocatalytic deuteration strategy, achieving high chemo-, enantio- and isotopic selectivity, requiring only <sup>2</sup>H<sub>2</sub>O (D<sub>2</sub>O) and unlabelled dihydrogen under ambient conditions. The vast library of enzymes established for NADH-dependent C=O, C=C, and C=N bond reductions have yet to appear in the toolbox of commonly employed <sup>2</sup>H-labelling techniques due to requirements for suitable deuterated reducing equivalents. By facilitating transfer of deuterium atoms from <sup>2</sup>H<sub>2</sub>O solvent to NAD<sup>+</sup>, with H<sub>2</sub> gas as a clean reductant, we open up biocatalysis for asymmetric reductive deuteration as part of a synthetic pathway or in late stage functionalisation. We demonstrate enantioselective deuteration via ketone and alkene reductions and reductive amination, as well as exquisite chemo-control for deuteration of compounds with multiple unsaturated sites.</p><p></p>


Sign in / Sign up

Export Citation Format

Share Document