Supramolecular Organization of Neutral and Ionic Forms of Pharmaceutically Relevant Glycyrrhizic Acid—Amphiphile Self-Assembly and Inclusion of Small Drug Molecules

2012 ◽  
Vol 12 (4) ◽  
pp. 2133-2137 ◽  
Author(s):  
Ewa Tykarska ◽  
Stanisław Sobiak ◽  
Maria Gdaniec
2019 ◽  
Vol 24 (32) ◽  
pp. 3739-3757 ◽  
Author(s):  
Chandrabose Selvaraj ◽  
Sanjeev K. Singh

Nucleic acid is the key unit and a predominant genetic material for interpreting the fundamental basis of genetic information in an organism and now it is used for the evolution of a novel group of therapeutics. To identify the potential impact on the biological science, it receives high recognition in therapeutic applications. Due to its selective recognition of molecular targets and pathways, DNA significantly imparts tremendous specificity of action. Examining the properties of DNA holds numerous advantages in assembly, interconnects, computational elements, along with potential applications of DNA self-assembly and scaffolding include nanoelectronics, biosensors, and programmable/autonomous molecular machines. The interaction of low molecular weight, small molecules with DNA is a significant feature in pharmacology. Based on the mode of binding mechanisms, small molecules are categorized as intercalators and groove binders having a significant role in target-based drug development. The understanding mechanism of drug-DNA interaction plays an important role in the development of novel drug molecules with more effective and lesser side effects. This article attempts to outline those interactions of drug-DNA with both experimental and computational advances, including ultraviolet (UV) -visible spectroscopy, fluorescent spectroscopy, circular dichroism, nuclear magnetic resonance (NMR), molecular docking and dynamics, and quantum mechanical applications.


2021 ◽  
Vol 22 (17) ◽  
pp. 9634
Author(s):  
Moran Aviv ◽  
Dana Cohen-Gerassi ◽  
Asuka A. Orr ◽  
Rajkumar Misra ◽  
Zohar A. Arnon ◽  
...  

Supramolecular hydrogels formed by the self-assembly of amino-acid based gelators are receiving increasing attention from the fields of biomedicine and material science. Self-assembled systems exhibit well-ordered functional architectures and unique physicochemical properties. However, the control over the kinetics and mechanical properties of the end-products remains puzzling. A minimal alteration of the chemical environment could cause a significant impact. In this context, we report the effects of modifying the position of a single atom on the properties and kinetics of the self-assembly process. A combination of experimental and computational methods, used to investigate double-fluorinated Fmoc-Phe derivatives, Fmoc-3,4F-Phe and Fmoc-3,5F-Phe, reveals the unique effects of modifying the position of a single fluorine on the self-assembly process, and the physical properties of the product. The presence of significant physical and morphological differences between the two derivatives was verified by molecular-dynamics simulations. Analysis of the spontaneous phase-transition of both building blocks, as well as crystal X-ray diffraction to determine the molecular structure of Fmoc-3,4F-Phe, are in good agreement with known changes in the Phe fluorination pattern and highlight the effect of a single atom position on the self-assembly process. These findings prove that fluorination is an effective strategy to influence supramolecular organization on the nanoscale. Moreover, we believe that a deep understanding of the self-assembly process may provide fundamental insights that will facilitate the development of optimal amino-acid-based low-molecular-weight hydrogelators for a wide range of applications.


Author(s):  
Ashfaq Adnan ◽  
Wing Kam Liu

While cancers have no known cure, some of them can be successfully treated with the combination of surgery and systematic therapy. In general, systemic/widespread chemotherapy is usually injected into the bloodstream to attempt to target cancer cells. Such procedure often imparts devastating side effects because cancer drugs are nonspecific in activity, and transporting them throughout the bloodstream further reduces their ability to target the right region. This means that they kill both healthy and unhealthy cells. It has been observed that the physiological conditions of the fluids around living cells can be characterized by pH, and the magnitude of pH around a living cell is different from cancerous cells. Moreover, a multiscale anatomy of carcinoma will reveal that the microstructure of cancer cells contains some characteristic elements such as specific biomarker receptors and DNA molecules that exclusively differentiate them from healthy cells. If these cancer specific ligands can be intercalated by some functional molecules supplied from an implantable patch, then the patch can be envisioned to serve as a complementary technology with current systemic therapy to enhance localized treatment efficiency, minimize excess injections/surgeries, and prevent tumor recurrence. The broader objective of our current research is to capture some fundamental insights of such drug delivery patch system. It is envisioned that the essential components of the device is nanodiamonds (ND), parylene buffer layer and doxorubicin (DOX) drugs. In its simplest form, self-assembled nanodiamonds - functionalized or pristine, and DOX molecules are contained inside parylene capsule. The efficient functioning of the device is characterized by its ability to precisely detect targets (cancer cells) and then to release drugs at a controlled manner. The fundamental science issues concerning the development of the ND-based device include: 1. A precise identification of the equilibrium structure and self assembled morphology of nanodiamonds, 2. Fundamental understanding of the drug adsorption and desorption process to and from NDs, and 3. The rate of drug release through the parylene buffers. The structure of the nanodiamond (ND) is crucial to the adsorption and desorption of drug molecules because it not only changes the self-assembly configuration but also alters the surface electrostatics. To date, the structure and electrostatics of NDs are not yet well understood. A density functional tight binding theory (DFTB) study on smaller [2] NDs suggests a facet dependent charge distributions on ND surfaces. These charges are estimated by Mulliken Analysis [1]. Using the charges for smaller NDs (∼valid for 1–3.3 nm dia ND) we first projected surface charges for larger (4–10 nm) truncated octahedral nanodiamonds (TOND), and it has been found that the [100] face and the [111] face contain positively and negatively charged atoms, respectively. These projected charges are then utilized to obtain the self assembled structure of pristine TONDs from Molecular Dynamics (MD) simulations [4] as shown in Fig. 1. The opposite charges on the [100] and [111] face invoked electrostatic attractions among the initially isolated NDs and a network of nanodiamond agglutinates are formed as evidenced in Fig. 1(b). This study confirms why as manufactured NDs are found in agglomerated form. The study also suggests that a large fraction of ND surfaces become unavailable for drug absorption as many of the [100] faces are coherently connected to [111] faces. As a result, it can be perceived that effective area for drug adsorption on ND surfaces will be less compared to theoretical prediction which suggests that a 4nm TOND may contain as high 360 drug molecules on its surface [5]. It has been observed that as manufactured NDs may contain a variety of functional groups, and currently, we are studying the mechanism of self-assembly for functionalized nanodiamonds so that we understand the role of functional groups. The next phase of calculation involves binding of the DOX to the NDs. Essentially, the understanding of drug absorption and desorption profile at a controlled rate to and from NDs is the most critical part of the device design. Some recent quantum calculation suggests that part of NDs and drug molecules contain opposite charges at their surfaces; it has been a natural interpretation that interactions between ND and drug molecules should be straight-forward — NDs should attract to drugs as soon as they come closure. Recent experiments [6], however, suggest that NDs usually do not interact with drug molecules in the presence of neutral solutions. Addition of NaCl in the solution improves the interaction dramatically. In the first part of the study, we [3–5] have studied the interaction of single DOX molecules with TOND surfaces via MD simulation. As shown in Fig. 2, this study suggests that DOX molecules first arrange them around the preferential sites on nanodiamonds (e.g. around the [111] face) and then spontaneously attach on the surface. It is also observed that only DOX molecule is attached per facets of TONDs. It can be noted that each TOND has 6 [100] face and 8 [111] faces. Figure 3 shows the energy minimization process during the DOX-ND interaction. It can be noted that these simulations have been performed in vacuum environment. In order to see how DOX interacts in solution media, another set of simulations have been conducted where “vacuum” environment have been replaced with solution media of different pH. Moreover, functionalization on the ND surfaces will create a different environment for the DOX molecules. Research is underway to capture the fundamental physics on the DOX loading and release to and from functionalized nanodiamonds. Once we understand the essential physics of drug loading and unloading, in the future we plan to model diffusion controlled drug release through ND coated film device by incorporating the multiscale science learned from the current study. Results from this study will provide fundamental insight on the definitive targeting of infected cells and high resolution controlling of drug molecules.


RSC Advances ◽  
2018 ◽  
Vol 8 (57) ◽  
pp. 32823-32831 ◽  
Author(s):  
Sengan Megarajan ◽  
Siva Bala Subramaniyan ◽  
Sureshan Muthuswamy ◽  
Savarimuthu Philip Anthony ◽  
Jothi Arunachalam ◽  
...  

Self assembly of N-acyltris(hydroxymethyl)aminomethane into interdigitized vesicles.


2014 ◽  
Vol 887-888 ◽  
pp. 647-650
Author(s):  
Ri Hong Tan

Calixarene is the third generation of the main compound. Its molecular recognition, simulation enzyme catalysis, molecular catalysis, analytical chemistry, self-assembly, and other areas of research have made great progress. calixarene represent a well-known family of macrocyclic molecules with broad range of potential applications in engineering materials fields. calixarene derivatives for simulating biological system, or in the form of new drug molecules targeting molecule reaction vessel, molecular switches, etc.; Under certain conditions because some new calixarene derivatives with the liquid crystal properties, so some new type of liquid crystal materials can be screened and prepared.


2021 ◽  
pp. FSO744
Author(s):  
Alaa AA Aljabali ◽  
Sk Sarif Hassan ◽  
Ritesh M Pabari ◽  
Seyed H Shahcheraghi ◽  
Vijay Mishra ◽  
...  

The purpose of this review is to highlight recent scientific developments and provide an overview of virus self-assembly and viral particle dynamics. Viruses are organized supramolecular structures with distinct yet related features and functions. Plant viruses are extensively used in biotechnology, and virus-like particulate matter is generated by genetic modification. Both provide a material-based means for selective distribution and delivery of drug molecules. Through surface engineering of their capsids, virus-derived nanomaterials facilitate various potential applications for selective drug delivery. Viruses have significant implications in chemotherapy, gene transfer, vaccine production, immunotherapy and molecular imaging.


Pharmaceutics ◽  
2019 ◽  
Vol 11 (2) ◽  
pp. 50 ◽  
Author(s):  
Santiago Grijalvo ◽  
Gustavo Puras ◽  
Jon Zárate ◽  
Myriam Sainz-Ramos ◽  
Nuseibah A. L. Qtaish ◽  
...  

Cationic niosomes have become important non-viral vehicles for transporting a good number of small drug molecules and macromolecules. Growing interest shown by these colloidal nanoparticles in therapy is determined by their structural similarities to liposomes. Cationic niosomes are usually obtained from the self-assembly of non-ionic surfactant molecules. This process can be governed not only by the nature of such surfactants but also by others factors like the presence of additives, formulation preparation and properties of the encapsulated hydrophobic or hydrophilic molecules. This review is aimed at providing recent information for using cationic niosomes for gene delivery purposes with particular emphasis on improving the transportation of antisense oligonucleotides (ASOs), small interference RNAs (siRNAs), aptamers and plasmids (pDNA).


2018 ◽  
Vol 115 (36) ◽  
pp. 8895-8900 ◽  
Author(s):  
Madeleine Piot ◽  
Benjamin Abécassis ◽  
Dalil Brouri ◽  
Claire Troufflard ◽  
Anna Proust ◽  
...  

Discrete metallomacrocycles are attractive scaffolds for the formation of complex supramolecular architectures with emergent properties. We herein describe the formation of hierarchical nanostructures using preformed metallomacrocycles by coordination-driven self-assembly of a covalent organic–inorganic polyoxometalate (POM)-based hybrid. In this system, we take advantage of the presence of charged subunits (POM, metal linker, and counterions) within the metallomacrocycles, which drive their aggregation through intermolecular electrostatic interactions. We show that the solvent composition and the charge of the metal linker are key parameters that steer the supramolecular organization. Different types of hierarchical self-assemblies, zero-dimensional (0D) dense nanoparticles, and 1D worm-like nanoobjects, can be selectively formed owing to different aggregation modes of the metallomacrocycles. Finally, we report that the worm-like structures drastically enhance the solubility in water of a pyrene derivative and can act as molecular carriers.


2015 ◽  
Vol 51 (67) ◽  
pp. 13170-13173 ◽  
Author(s):  
Wenbin Jin ◽  
Qiwei Yang ◽  
Zhiguo Zhang ◽  
Zongbi Bao ◽  
Qilong Ren ◽  
...  

The self-assembly induced solubilization strategy features the formation of highly ordered mesoscopic structures, such as liquid crystals, through self-assembly of a solute in nanostructured ILs via H-bond interactions, resulting in unprecedented solubility for drug molecules.


Sign in / Sign up

Export Citation Format

Share Document