Dependence of the Population on the Temperature in the Boltzmann Distribution: A Simple Relation Involving the Average Energy

2013 ◽  
Vol 90 (12) ◽  
pp. 1639-1644 ◽  
Author(s):  
Celestino Angeli ◽  
Renzo Cimiraglia ◽  
Federico Dallo ◽  
Riccardo Guareschi ◽  
Lorenzo Tenti
1987 ◽  
Vol 65 (5) ◽  
pp. 527-529
Author(s):  
A. C. Saha ◽  
M. M. Samanta ◽  
D. K. Pal ◽  
R. N. Nandy ◽  
B. K. Bandopadhyay

Production of pions through the intermediate state called fireballs has been considered to study the energy distribution of pions in the fireball-rest system. Nikfi-R-type photoemulsion plates exposed to the 70-GeV proton beam of the Surpukhov Accelerator, Dubna, USSR, are used for this purpose. A graphical representation of the distribution of energies among the pions is shown. It is observed that this distribution closely resembles Planck's distribution of photons. Furthermore, this study reveals that the Maxwell–Boltzmann distribution deviates greatly from experimental observations. The average energy of the pions is found to be (0.770 ± 0.03) GeV.


Author(s):  
David C. Joy ◽  
Suichu Luo ◽  
John R. Dunlap ◽  
Dick Williams ◽  
Siqi Cao

In Physics, Chemistry, Materials Science, Biology and Medicine, it is very important to have accurate information about the stopping power of various media for electrons, that is the average energy loss per unit pathlength due to inelastic Coulomb collisions with atomic electrons of the specimen along their trajectories. Techniques such as photoemission spectroscopy, Auger electron spectroscopy, and electron energy loss spectroscopy have been used in the measurements of electron-solid interaction. In this paper we present a comprehensive technique which combines experimental and theoretical work to determine the electron stopping power for various materials by electron energy loss spectroscopy (EELS ). As an example, we measured stopping power for Si, C, and their compound SiC. The method, results and discussion are described briefly as below.The stopping power calculation is based on the modified Bethe formula at low energy:where Neff and Ieff are the effective values of the mean ionization potential, and the number of electrons participating in the process respectively. Neff and Ieff can be obtained from the sum rule relations as we discussed before3 using the energy loss function Im(−1/ε).


Author(s):  
Jason R. Heffelfinger ◽  
C. Barry Carter

Yttria-stabilized zirconia (YSZ) is currently used in a variety of applications including oxygen sensors, fuel cells, coatings for semiconductor lasers, and buffer layers for high-temperature superconducting films. Thin films of YSZ have been grown by metal-organic chemical vapor deposition, electrochemical vapor deposition, pulse-laser deposition (PLD), electron-beam evaporation, and sputtering. In this investigation, PLD was used to grow thin films of YSZ on (100) MgO substrates. This system proves to be an interesting example of relationships between interfaces and extrinsic dislocations in thin films of YSZ.In this experiment, a freshly cleaved (100) MgO substrate surface was prepared for deposition by cleaving a lmm-thick slice from a single-crystal MgO cube. The YSZ target material which contained 10mol% yttria was prepared from powders and sintered to 85% of theoretical density. The laser system used for the depositions was a Lambda Physik 210i excimer laser operating with KrF (λ=248nm, 1Hz repetition rate, average energy per pulse of 100mJ).


1973 ◽  
Vol 29 (03) ◽  
pp. 694-700 ◽  
Author(s):  
Paul L. Rifkin ◽  
Marjorie B. Zucker

SummaryDipyridamole (Persantin) is reported to prolong platelet survival and inhibit embolism in patients with prosthetic heart valves, but its mechanism of action is unknown. Fifty jxM dipyridamole failed to reduce the high percentage of platelets retained when heparinized human blood was passed through a glass bead column, but prolonged the inhibition of retention caused by disturbing blood in vitro. Possibly the prostheses act like disturbance. Although RA 233 was as effective as dipyridamole in inhibiting the return of retention, it was less effective in preventing the uptake of adenosine into erythrocytes, and more active in inhibiting ADP-induced aggregation and release. Thus there is no simple relation between these drug effects.


2020 ◽  
pp. 8-12
Author(s):  
Alexandr V. Oborin ◽  
Anna Y. Villevalde ◽  
Sergey G. Trofimchuk

The results of development of the national primary standard of air kerma, air kerma rate, exposure, exposure rate and energy flux for X-rays and gamma radiation GET 8-2011 in 2019 are presented according to the recommendations of the ICRU Report No. 90 “Key Data for Ionizing-Radiation Dosimetry: Measurement Standards and Applications”. The following changes are made to the equations for the units determination with the standard: in the field of X-rays, new correction coefficients of the free-air ionization chambers are introduced and the relative standard uncertainty of the average energy to create an ion pair in air is changed; in the field of gamma radiation, the product of the average energy to create an ion pair in air and the electron stopping-power graphite to air ratio for the cavity ionization chambers is changed. More accurate values of the units reproduced by GET 8-2019 are obtained and new metrological characteristics of the standard are stated.


Author(s):  
K.S. Klen ◽  
◽  
M.K. Yaremenko ◽  
V.Ya. Zhuykov ◽  
◽  
...  

The article analyzes the influence of wind speed prediction error on the size of the controlled operation zone of the storage. The equation for calculating the power at the output of the wind generator according to the known values of wind speed is given. It is shown that when the wind speed prediction error reaches a value of 20%, the controlled operation zone of the storage disappears. The necessity of comparing prediction methods with different data discreteness to ensure the minimum possible prediction error and determining the influence of data discreteness on the error is substantiated. The equations of the "predictor-corrector" scheme for the Adams, Heming, and Milne methods are given. Newton's second interpolation formula for interpolation/extrapolation is given at the end of the data table. The average relative error of MARE was used to assess the accuracy of the prediction. It is shown that the prediction error is smaller when using data with less discreteness. It is shown that when using the Adams method with a prediction horizon of up to 30 min, within ± 34% of the average energy value, the drive can be controlled or discharged in a controlled manner. References 13, figures 2, tables 3.


2020 ◽  
pp. 28-37
Author(s):  
Oleksandra V. Kubatko ◽  
Diana O. Yaryomenko ◽  
Mykola O. Kharchenko ◽  
Ismail Y. A. Almashaqbeh

Interruptions in electricity supply may have a series of failures that can affect banking, telecommunications, traffic, and safety sectors. Due to the two-way interactive abilities, Smart Grid allows consumers to automatically redirect on failure, or shut down of the equipment. Smart Grid technologies are the costly ones; however, due to the mitigation of possible problems, they are economically sound. Smart grids can't operate without smart meters, which may easily transmit real-time power consumption data to energy data centers, helping the consumer to make effective decisions about how much energy to use and at what time of day. Smart Grid meters do allow the consumer to track and reduce energy consumption bills during peak hours and increase the corresponding consumption during minimum hours. At a higher level of management (e.g., on the level of separate region or country), the Smart Grid distribution system operators have the opportunity to increase the reliability of power supply primarily by detecting or preventing emergencies. Ukraine's energy system is currently outdated and cannot withstand current loads. High levels of wear of the main and auxiliary equipment of the power system and uneven load distribution in the network often lead to emergencies and power outages. The Smart Grid achievements and energy sustainability are also related to the energy trilemma, which consists of key core dimensions– Energy Security, Energy Equity, and Environmental Sustainability. To be competitive in the world energy market, the country has to organize efficiently the cooperation of public/private actors, governments, economic and social agents, environmental issues, and individual consumer behaviors. Ukraine gained 61 positions out of 128 countries in a list in 2019 on the energy trilemma index. In general, Ukraine has a higher than average energy security position and lower than average energy equity, and environmental sustainability positions. Given the fact that the number of renewable energy sources is measured in hundreds and thousands, network management is complicated and requires a Smart Grid rapid response. Keywords: economic development, Smart Grid, electricity supply, economic and environmental efficiency.


2019 ◽  
Vol 82 (10) ◽  
pp. 1387-1391
Author(s):  
S. A. Sarantsev ◽  
I. F. Raevskii ◽  
V. A. Kostyushin ◽  
A. S. Savelov

Author(s):  
Niels Engholm Henriksen ◽  
Flemming Yssing Hansen

This chapter reviews the microscopic interpretation of the pre-exponential factor and the activation energy in rate constant expressions of the Arrhenius form. The pre-exponential factor of apparent unimolecular reactions is, roughly, expected to be of the order of a vibrational frequency, whereas the pre-exponential factor of bimolecular reactions, roughly, is related to the number of collisions per unit time and per unit volume. The activation energy of an elementary reaction can be interpreted as the average energy of the molecules that react minus the average energy of the reactants. Specializing to conventional transition-state theory, the activation energy is related to the classical barrier height of the potential energy surface plus the difference in zero-point energies and average internal energies between the activated complex and the reactants. When quantum tunnelling is included in transition-state theory, the activation energy is reduced, compared to the interpretation given in conventional transition-state theory.


Author(s):  
Niels Engholm Henriksen ◽  
Flemming Yssing Hansen

This introductory chapter considers first the relation between molecular reaction dynamics and the major branches of physical chemistry. The concept of elementary chemical reactions at the quantized state-to-state level is discussed. The theoretical description of these reactions based on the time-dependent Schrödinger equation and the Born–Oppenheimer approximation is introduced and the resulting time-dependent Schrödinger equation describing the nuclear dynamics is discussed. The chapter concludes with a brief discussion of matter at thermal equilibrium, focusing at the Boltzmann distribution. Thus, the Boltzmann distribution for vibrational, rotational, and translational degrees of freedom is discussed and illustrated.


Sign in / Sign up

Export Citation Format

Share Document