Molecular Origins of Crude Oil Interfacial Activity Part 3:  Characterization of the Complex Fluid Rag Layer Formed at Crude Oil−Water Interfaces

2007 ◽  
Vol 21 (3) ◽  
pp. 1617-1621 ◽  
Author(s):  
Ramesh Varadaraj ◽  
Cornelius Brons
2005 ◽  
Vol 13 (6) ◽  
pp. 28-31
Author(s):  
Richard W. Cloud ◽  
Rebecca L. Ramsey ◽  
Robert A. Pultz ◽  
Michael K. Poindexter

Production of crude oil is generally accompanied by several other product phases, namely water, gas and solids. Pressure drops across chokes, concomitant gas evolution (due to pressure drops) and turbulence caused by various pipeline configurations can create difficult-to-resolve emulsions. Natural crude oil surfactants and solids exacerbate the problem further by migrating to the newly created oil-water interface and stabilizing the unwanted emulsions. Once the fluids arrive at the production facilities, a variety of vessels are employed to separate the oil, gas and water. Depending on the wettability of the solids, they will exit via one or both of the liquid phases. In a worse case scenario, the solids will accumulate at the oil-water interface.


Author(s):  
Roland Nagy ◽  
Andrea Elekes ◽  
László Bartha ◽  
Árpád Vágó

2011 ◽  
Vol 391-392 ◽  
pp. 156-160
Author(s):  
Shan Fa Tang ◽  
Xiao Dong Hu ◽  
Xiang Nan Ouyang ◽  
Shuang Liu

Both transient-state and steady-state interfacial tension (IFT) between anion Gemini surfactants solution and crude oil were measured. The effects of various parameters such as anion Gemini surfactant molecular structure, concentration, category of crude oil and salinity of water medium on the interfacial tension between crude oil and water were investigated in detail. The results reveal that when the length of the carbon chain or the carbon number of spacer is constants, the increase of either carbon number of interval groups or length of carbon chain is favorable to decrease the interfacial tension. AN12-4-12 has the lowest interfacial tension. As the concentration of anion Gemini surfactant increasing, the interfacial tension between crude oil and water decreases. Anion Gemini surfactants which have a larger carbon number of interval group and longer hydrophobic carbon chain have a better interfacial activity. AN12-4-12 has the best interfacial activity. When the concentration of AN10-4-10, AN12-4-12 reaches up to 2000 mg•L-1, it can lower the steady-state oil-water IFT to 10-3mN•m-1. Different kinds of crude oil have different effects of decreasing IFT and different interfacial activity for the same anion Gemini surfactant. The Critical Micelle Concentration (352mg•L-1, 487mg•L-1) of AN8-4-8 and AN12-4-12 between thin oil and water interface is obviously lower than those (1000mg•L-1, 3000mg•L-1) between mixed heavy oil and water interface. But molecular structure still has a larger influence on interfacial tension than category of crude oil. The IFT between AN12-4-12 solutions and mixed heavy oil lower an order of magnitude than that between AN8-4-8 solutions and mixed heavy oil. As the solution salinity increased, the interfacial tension between anion Gemini surfactant solution and thin oil decrease rapidly. The longer the hydrophobic carbon chain is, the more obvious the effect of salinity is. The salinity is not less than 1.2×105mg•L-1, AN12-4-12 can decrease the oil-water interfacial tension to 2.2×10-3mN•m-1, while AN8-4-8 only makes that reduce to 9.7×10-3mN•m-1.


Author(s):  
Huijun Zhao ◽  
Xiang Ding ◽  
Pengfei Yu ◽  
Yun Lei ◽  
Xiaofei Lv ◽  
...  

Molecules ◽  
2021 ◽  
Vol 26 (13) ◽  
pp. 3832
Author(s):  
Rubén Agregán ◽  
Noemí Echegaray ◽  
María López-Pedrouso ◽  
Radwan Kharabsheh ◽  
Daniel Franco ◽  
...  

Proteomics is a new area of study that in recent decades has provided great advances in the field of medicine. However, its enormous potential for the study of proteomes makes it also applicable to other areas of science. Milk is a highly heterogeneous and complex fluid, where there are numerous genetic variants and isoforms with post-translational modifications (PTMs). Due to the vast number of proteins and peptides existing in its matrix, proteomics is presented as a powerful tool for the characterization of milk samples and their products. The technology developed to date for the separation and characterization of the milk proteome, such as two-dimensional gel electrophoresis (2DE) technology and especially mass spectrometry (MS) have allowed an exhaustive characterization of the proteins and peptides present in milk and dairy products with enormous applications in the industry for the control of fundamental parameters, such as microbiological safety, the guarantee of authenticity, or the control of the transformations carried out, aimed to increase the quality of the final product.


Sign in / Sign up

Export Citation Format

Share Document