Biodiesel Production from Used Vegetable Oil Using Ethanol and Sodium Methoxide Catalyst

2016 ◽  
Vol 723 ◽  
pp. 551-555
Author(s):  
Sureerat Namwong ◽  
Vittaya Punsuvon

Biodiesel is derived from triglycerides by transesterification with methanol or ethanol. In this study, used vegetable oil was transesterified with ethanol using sodium methoxide as catalyst. Parameter affecting the process transesterification were investigated follow this detail. The effects of catalyst to oil volume ratio (3-7:100 %v/v), ethanol to oil volume ratio (20-40:100 %v/v), reaction temperature (55-70 °C) and reaction time (15-90 min.) on the percentage conversion of fatty acid ethyl ester (FAEE) and fatty acid methyl ester (FAME). The FAEE and FAME conversion were detected by 1H-NMR. The result showed that the maximum percentages at 84 % of FAEE and 16 % of FAME were obtained. These conversions were obtained at the catalyst to oil volume ratio of 4:100 %v/v, ethanol to oil volume ratio of 35:100 %v/v, temperature of 65 °C and reaction time of 75 min. The properties of mixed FAEE and FAME biodiesel were within the limits of EN standard. The confirmation result by 1H-NMR and ATR-FTIR also indicated the conversion of used vegetable oil into biodiesel.

2017 ◽  
Vol 873 ◽  
pp. 89-94
Author(s):  
Sureerat Namwong ◽  
Vittaya Punsuvon ◽  
Wallop Arirop

Production of ethyl ester biodiesel from a tranesterification reaction of used vegetable oil and ethanol was carried out using a sodium methoxide catalyst. Response surface methodology (RSM) was applied to investigate the effect of experimental factors on the fatty acid ethyl ester (FAEE) conversion. The design of the experiment involved a 5-level-4-factor central composite design and 30 runs were used to achieve the optimum percentage FAEE conversion that was determined by 1H-NMR. The coefficient of determination (R2) for the regression equation was 86.49% and the probability value (p<0.05) demonstrated a very good fit for the regression model. The optimum conditions obtained from RSM were 4% v/v of catalyst, 35.61% v/v of ethanol-to-oil, at 43.70°C reaction temperature, and 75.45 min of reaction time. The produced ethyl ester biodiesel was further purified by wet washing compared with dry washing using ion exchange resin. The result showed that the purified biodiesel by wet washing met the EN standard but the dry washing out put did not but only for the acid value. The blending of 10% v/v of purified biodiesel obtained from dry washing with 90% v/v of petrodiesel could decrease the acid value to meet the EN standard.


2016 ◽  
Vol 723 ◽  
pp. 610-615 ◽  
Author(s):  
Natta Pimngern ◽  
Vittaya Punsuvon

Crude coconut oil with high free fatty acid (FFA) content was used as a raw material to produce biodiesel. In this work, the esterification followed by transesterification of crude coconut oil with methanol is studied. The response surface methodology (RSM) with 5-level-3-factor central composite design (CCD) was applied to study the effect of different factors on the FFA content of esterification and the percentage of fatty acid methyl ester (FAME) conversion of transesterification. The FAME conversion was detected by proton magnetic resonance (1H-NMR) spectrometer. As a result, the optimum conditions for esterification were 6:1 of methanol-to-oil molar ratio, 0.75wt% of sulfuric acid (H2SO4) concentration and 90 min of reaction time. The optimum conditions for transesterification were 8.23:1 of methanol-to-oil molar ratio, 0.75wt% of sodium hydroxide (NaOH) concentration and 80 min of reaction time. Quadratic model equations were obtained describing the relationships between dependents and independent variables to minimize the FFA content and maximize the FAME conversion. Fuel properties of the crude coconut oil biodiesel were also examined followed ASTM and EN standards. The results showed that all properties met well with both standards.


2016 ◽  
Vol 5 (3) ◽  
pp. 38-43
Author(s):  
Windi Monica Surbakti ◽  
Gerson Rico M.H ◽  
Mersi Suriani Sinaga

Glycerol as a byproduct of biodiesel production was approximately formed 10% of the biodiesel weight. Impurities which contained in the glycerol such as catalyst, soap, methanol, water, salt, and matter organic non glycerol (MONG) have a significant effect on the glycerol concentration. So, it is necessary to treat the impurities. The purpose of this study is to know the effect of chloroform to glycerol purification process with acidification method using hydrochloric acid as pretreatment process. This research was begun with acid addition to the glycerol to neutralize the base content and to split the soap content into free fatty acid and salt, that are more easily separated from glycerol. Then the process was continued with extraction by the solvent chloroform using the variable of test volume ratio (v/v) (1:1, 1:1.5, 1:2)  and the extraction time (20, 40, and 60 minutes). The results showed that the more volume of solvent used, gave less extraction time to produce high purity of glycerol. The highest purity produced in this study amounted to 90,9082% is obtained at the ratio of the volume solvent (v/v) 1:1 with extraction time 60 minutes.


Catalysts ◽  
2018 ◽  
Vol 8 (11) ◽  
pp. 527 ◽  
Author(s):  
Gaojian Ma ◽  
Lingmei Dai ◽  
Dehua Liu ◽  
Wei Du

Acidic oil, which is easily obtained and with lower cost, is a potential raw material for biodiesel production. Apart from containing large quantity of FFAs (free fatty acids), acidic oil usually contains some amount of inorganic acid, glycerides and some other complex components, leading to complicated effect on lipase’s catalytic performance. Exploring the efficient process of converting acidic oil for biodiesel production is of great significance to promote the use of acidic oil. A two-step conversion process for acidic soybean oil was proposed in this paper, where sulfuric acid-mediated hydrolysis was adopted first, then the hydrolyzed free fatty acid, collected from the upper oil layer was further subject to the second-step esterification catalyzed by immobilized lipase Novozym435. Through this novel process, the negative effect caused by harmful impurities and by-product glycerol on lipase was eliminated. A fatty acid methyl ester (FAME) yield of 95% could be obtained with the acid value decreased to 4 mgKOH/g from 188 mgKOH/g. There was no obvious loss in lipase’s activity and a FAME yield of 90% could be maintained with the lipase being repeatedly used for 10 batches. This process was found to have a good applicability to different acidic oils, indicating it has great prospect for converting low quality oil sources for biodiesel preparation.


2021 ◽  
Vol 25 (4) ◽  
pp. 537-542
Author(s):  
C.A. Odega ◽  
G.T. Anguruwa ◽  
C.O. Fakorede

Biodiesel is a fuel produced from renewable resources; it is a clean alternative fuel, which has drawn the attention of energy researchers for the last two decades due to the disturbing effect of climate change caused by diesel fuel. This paper focuses on showcasing the qualities of biodiesel produced from used vegetable oil and the positive impact on the alarming change in climate today. This paper presents an experimental investigation on production of biodiesel from used vegetable oil (UVO) gotten from a road side bean cake (akara) seller. The oil that was intended to be thrown out was de-odoured and filtered to remove impurities. The filtered oil was then used for biodiesel production and characterized with physical and fuel properties such as density, viscosity, cloud point, refractive index, specific gravity, ash content, moisture content, flash point and cloud point. The results obtained were afterwards compared to ASTM (American Society for Testing and Materials) and EN (Europe’s) international standards. Two biodiesels samples were produced at different temperatures but the same timings. The biodiesel were produced at 700C at 40mins (biodiesel A) and 1000C at 40mins (biodiesel B) with values of specific gravity (0.98 kg/m3; 0.90 kg/m3), density (936kg/m3; 882kg/m3), kinematic viscosity (1.5mm/s2; 5.5 mm/s2), cloud point (150C; 20C), flash point (2600C min; 2000C min), moisture content (0.07%; 0.04%), refractive index (1.4609; 1.4398) and ash point (0.24%; 0.01%) respectively. On comparison, biodiesel A couldn’t match up to the international standards while biodiesel matched up to the standards given.


2019 ◽  
Vol 14 (3) ◽  
pp. 417-425 ◽  
Author(s):  
Omojola Awogbemi ◽  
Emmanuel Idoko Onuh ◽  
Freddie L Inambao

Abstract Vegetable oils have been used as a feedstock for fatty acid methyl ester (FAME) production. The high cost of neat vegetable oil and its impact on food security have necessitated its replacement as a feedstock for FAME by used vegetable oil, also known as waste cooking oil (WCO). This study compares the properties and fatty acid (FA) compositions of samples of neat vegetable oil with those of samples of WCO, collected from restaurants and takeaway outlets at the point of disposal. The samples were subjected to property determination and pyrolysis gas chromatography mass spectrometer (PYGCMS) analysis. Analysis showed that degree of usage and the type of food items originally fried in the oil substantially affected its properties and FA composition. Density of neat vegetable oil varied between 904.3 and 919.7 kg/m3 and of WCO between 904.3 and 923.2 kg/m3. The pH of neat vegetable oil varied between 7.38 and 8.63 and of WCO between 5.13 and 6.61. The PYGCMS analysis showed that neat palm oil contains 87.7% unsaturated FA and 12.3% saturated FA, whereas neat sunfoil contains 74.37% saturated FA and 25% polyunsaturated FA. Generally, neat vegetable oils consisted mainly of saturated FAs and polyunsaturated FAs, whereas the WCO contained mainly of saturated FAs and monounsaturated FAs. This research confirms the suitability of WCO as feedstock for FAME.


Bioengineered ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 408-415 ◽  
Author(s):  
Ferruh Asci ◽  
Busra Aydin ◽  
Gulderen Uysal Akkus ◽  
Arzu Unal ◽  
Sevim Feyza Erdogmus ◽  
...  

2019 ◽  
Vol 42 ◽  
pp. e46582 ◽  
Author(s):  
José Carlos Quilles Junior ◽  
Ana Lucia Ferrarezi ◽  
Janaina Pires Borges ◽  
Jessika Souza Rossi ◽  
Daniela Alonso Bocchini ◽  
...  

Hydrophobic carriers can be used to improve the activity, stability and other properties of enzymes. Physical agents, like ultrasound, may also contribute to improving the dispersion and collision of the reagent molecules, decreasing the reaction time and intensifying the catalytic process. However, its effect on the enzyme activity and reaction selectivity is still not entirely understood. Here, enzyme modulation of immobilized lipases was studied under pulsed ultrasound irradiation in fatty acid ethyl ester (FAEE) synthesis for biodiesel production. Novozym 435® and two commercial lipases from Thermomyces lanuginosus and Rhizomucor miehei, immobilized on Octadecyl-Sepabeads were used as a biocatalyst in the transesterification reaction of vegetable oils and ethanol. The use of ultrasound associated with catalysis by the Novozym 435 increased the production of FAEE by about three times (from 8.9 to 26.4%) using soybean oil and changes were observed in the profile of the products. From the sonicated reaction, ethyl-palmitate production decreased from 23.4 to 11.7%, while the ethyl-linoleate content rose from 47.5 to 59.2%. On the other hand, the T. lanuginosus lipase was less affected by sonication with the overall production of FAEE increasing from 17.2 to 24.1%, with ethyl-palmitate and ethyl-linoleate content changing from 16.2 to 17.5% and 55.0 to 47.8%, respectively. Although the changes in the production yield are not too high, the main idea here was to show that ultrasound modulates the lipase activity as well as its respective selectivity. Thus, ultrasound, is responsible for changing the ethyl ester production, which can be applied to many other biochemical processes to improve or modulate their synthesis yield.


2015 ◽  
Vol 7 (14) ◽  
pp. 5898-5906 ◽  
Author(s):  
S. T. Anuar ◽  
S. M. Mugo ◽  
J. M. Curtis

A flow-through enzymatic microreactor for the rapid conversion of triacylglycerols (TAG) into fatty acid ethyl ester (FAEE) or fatty acid methyl ester (FAME) derivatives was developed.


Sign in / Sign up

Export Citation Format

Share Document