Enhancing Bitumen Liberation by Controlling the Interfacial Tension and Viscosity Ratio through Solvent Addition

2014 ◽  
Vol 28 (12) ◽  
pp. 7403-7410 ◽  
Author(s):  
Lin He ◽  
Feng Lin ◽  
Xingang Li ◽  
Zhenghe Xu ◽  
Hong Sui
1966 ◽  
Vol 6 (03) ◽  
pp. 247-253 ◽  
Author(s):  
Necmettin Mungan

Abstract A study was made of the effects of wettability and interfacial tension the immiscible displacement of a liquid by another liquid for porous media. The influence of viscosity ratio was also investigated. Porous media used were polytetrafluoroethylene (TFE) cores prepared by compressing TFE powder under different pressures. It is shown that displacement of a wetting by a nonwetting liquid is always less efficient than the displacement of a nonwetting by a wetting fluid, all other things being equal. In the former case, the recovery efficiency can be increased substantially by either reducing the interfacial tension or increasing the viscosity of the displacing fluid. A qualitative discussion is given on the implications of this work to the recovery of crude oil by waterflooding. Introduction The high cost of oil exploration and new recovery schemes makes it imperative that waterflooding be conducted under conditions favoring most efficient oil recovery. To improve oil recovery by waterflooding, it is essential that the role played by interfacial forces in the entrapment of residual oil be studied and understood. Interfacial phenomena in natural rock, connate water and crude oil systems are very complicated because of the complexity of the natural liquids found in petroleum reservoirs, because of our inability to adequately describe the geometrical structure of the porous media and because of a lack of understanding of physical and chemical interactions between the liquids and surface of the pores. The problem becomes further complicated when one tries to elucidate the role of interfacial phenomena in fluid flow. Numerous studies of the displacement of oil by water under different interfacial tension or wettability conditions have been made. These studies have been performed in silica, alundum or sandstone systems using water and paraffin oil and also some surface active material to control the interfacial tension or and the contact angle. Unfortunately, the high energies of various interfaces involved favor adsorption and orientation of the surface active material at the intrafaces. Also the surface active material concentration at the interfaces exceeds that in the bulk of the liquid phases. Such surface excess may cause the surfactant distribution, the contact angle and the interfacial tension to differ from their measured static equilibrium values and makes interpretation of the displacement experiments difficult. Furthermore, as changes in also lead to changes in cos, the role played individually by one of these parameters in the displacement becomes obscured by the effect of the other. To circumvent these difficulties, a low surface energy solid and true solutions or pure liquids should be used. Use of a low surface energy solid minimizes adsorption and orientation effects at the solid-liquid interfaces. By controlling and cos through use of selected pairs of pure liquids or true solutions rather than by surfactants, the adsorption effects at liquid-liquid interfaces are eliminated. In the present study TFE cores were used as me porous media. Liquids used were water sucrose solutions, paraffin oils and benzyl, n-butyl and isobutyl alcohols. The interfacial tension was varied from 40 to 1.1 dynes/cm by suitably choosing the liquid pair. A surface above material was added to the water-oil system only in the case where interfacial tension of 0.5 dynes/ cm was desired. No precise changes of cos were attempted. However, either the displaced or the displacing liquid could be made the one which preferentially wets the TFE surface. Using sucrose solutions and blends of paraffin oils proved to be a convenient way of changing the viscosity ratio between the displaced and displacing liquids. The present investigation examines the effect of interfacial tension, wettability and viscosity ratio on the immiscible liquid-liquid displacement from porous media. SPEJ P. 217ˆ


Author(s):  
Katerina Loizou ◽  
Voon-Loong Wong ◽  
Wim Thielemans ◽  
Buddhika Hewakandamby

Over the last decade, significant work has been performed in an attempt to quantify the effect of different parameters such as flowrate, geometrical and fluid characteristics on the droplet break up mechanism in microfluidic T-Junctions. This demand is dictated by the need of tight control of the size and dispersity of the droplets generated in such geometries. Even though several researchers have investigated the effect of viscosity ratio on both the droplet break up mechanism as well as on the regime transition, fluid properties have not been included in most scaling laws. It is therefore evident that the contribution of fluid properties has not been quantified thoroughly. In the present work, the effect of fluid properties on the volume of droplets generated in a microfluidic T-junction is investigated. The main aim of this work is to examine the influence of viscosity of both the dispersed and continuous phase as well as the effect of interfacial tension on the size of droplet generated along with the break up mechanism. Three different oils have been utilised as continuous phase in this work to enable investigation of the effect of viscosity of the continuous phase with experiments performed at constant Capillary numbers. Various glycerol weight percentages have been employed to vary the viscosity of the dispersed phase fluid (water). Lastly, the effect of interfacial tension has been explored using two of the oils at constant μcUc (viscous force term). High speed imaging has been utilised to visualise and measure the volume of the resulting droplets. The viscosity ratio (viscosity of dispersed phase over viscosity of continuous phase) between the two phases appears to affect the droplet generation mechanism, especially for the highest viscosity ratio employed (mineral oil-water system) where the system behaves in a noticeably different way. Influence of interfacial tension is also noticeable even though less evident. In terms of the effect of viscosity of dispersed phase on the droplet generation a small difference on the volume of the droplets generated in olive oil glycerol systems is also reported. In an attempt to enumerate the effect of fluid properties on the droplet generation mechanism in a microfluidic T-junction, this paper will present supporting evidence in detail on the above and a comparison of the findings with the existing theories.


2020 ◽  
Vol 12 (07) ◽  
pp. 2050077
Author(s):  
Seyedeh Sarah Salehi ◽  
Amir Shamloo ◽  
Siamak Kazemzadeh Hannani

Droplet-based microfluidics technologies hold great attention in a wide range of applications, including chemical analysis, drug screening, and food industries. This work aimed to describe the effects of different physical properties of the two immiscible phases on droplet formation in a flow-focusing microfluidic device and determining proper flow rates to form a droplet within the desired size range. A numerical model was developed to solve the governing equations of two-phase flow and the results were validated with previous experimental results. The results demonstrate different types of droplet formation regimes from dripping to jetting and different production rates of droplets as a consequence of the impact of each property on fluid flow, including the viscosity ratio, density, interfacial tension, and the flow rate ratio. Based on the results, flow rate, viscosity, and interfacial tension strongly affect the droplet formation regime as well as its size and shape. Droplet diameter increases by increasing the dispersed to continuous phase flow rate as well as the interfacial tension while it decreases by increasing the viscosity ratio and the continuous phase density. Moreover, the formation of satellite droplets was modeled, and the effect of interfacial tension, the viscosity of the dispersed phase and the continuous phase density were found to be important on the conditions that the satellite droplets are suppressed. Since the formation of the satellite droplets induces polydispersity in droplet size, this phenomenon is avoided. Collectively, choosing appropriate aqueous and oil phases with proper physical properties is crucial in forming monodisperse droplets with defined size and shape.


2017 ◽  
Vol 826 ◽  
pp. 128-157 ◽  
Author(s):  
Alireza Mohammadi ◽  
Alexander J. Smits

The stability of two-layer Couette flow is investigated under variations in viscosity ratio, thickness ratio, interfacial tension and density ratio. The effects of the base flow on eigenvalue spectra are explained. A new type of interfacial mode is discovered at low viscosity ratio with properties that are different from Yih’s original interfacial mode (Yih, J. Fluid Mech., vol. 27, 1967, pp. 337–352). No unstable Tollmien–Schlichting waves were found over the range of parameters considered in this work. The results for thin films with different thicknesses can be collapsed onto a single curve if the Reynolds number and wavenumber are suitably defined based on the parameters of the thin layer. Interfacial tension always has a stabilizing effect, but the effects of density ratio cannot be so easily generalized. Neutral stability curves for water–alkane and water–air systems are presented as an initial step towards better understanding the effects of flow stability on the longevity and performance of liquid-infused surfaces and superhydrophobic surfaces.


2018 ◽  
Vol 8 (9) ◽  
pp. 1497 ◽  
Author(s):  
Qingqing Gu ◽  
Haihu Liu ◽  
Yonghao Zhang

Understanding the dynamic displacement of immiscible fluids in porous media is important for carbon dioxide injection and storage, enhanced oil recovery, and non-aqueous phase liquid contamination of groundwater. However, the process is not well understood at the pore scale. This work therefore focuses on the effects of interfacial tension, wettability, and the viscosity ratio on displacement of one fluid by another immiscible fluid in a two-dimensional (2D) Berea sandstone using the colour gradient lattice Boltzmann model with a modified implementation of the wetting boundary condition. Through invasion of the wetting phase into the porous matrix, it is observed that the viscosity ratio plays an important role in the non-wetting phase recovery. At the viscosity ratio ( λ ) of unity, the saturation of the wetting fluid is highest, and it linearly increases with time. The displacing fluid saturation reduces drastically when λ increases to 20; however, when λ is beyond 20, the reduction becomes less significant for both imbibition and drainage. The front of the bottom fingers is finally halted at a position near the inlet as the viscosity ratio increases to 10. Increasing the interfacial tension generally results in higher saturation of the wetting fluid. Finally, the contact angle is found to have a limited effect on the efficiency of displacement in the 2D Berea sandstone.


RSC Advances ◽  
2018 ◽  
Vol 8 (39) ◽  
pp. 22023-22041 ◽  
Author(s):  
M. Yousfi ◽  
T. Dadouche ◽  
D. Chomat ◽  
C. Samuel ◽  
J. Soulestin ◽  
...  

A critical share rate exists, above which the droplet/fibril transition occurs during the injection moulding process. The elasticity ratio controls the morphology formation as well as the viscosity ratio and the interfacial tension.


Energy ◽  
2017 ◽  
Vol 133 ◽  
pp. 62-69 ◽  
Author(s):  
Gu Sun Jeong ◽  
Jaehyoung Lee ◽  
Seil Ki ◽  
Dae-Gee Huh ◽  
Chan-Hee Park

2003 ◽  
Vol 125 (2) ◽  
pp. 354-364 ◽  
Author(s):  
X. Guan ◽  
R. Pitchumani

A volume tracking method was developed to simulate time-dependent unstable viscous fingering in a Hele-Shaw cell. The effect of finite viscosity ratio μr between displacing and displaced fluids and their interfacial tension σ on finger morphology is investigated. It is shown that there exist four distinct finger patterns, depending upon the viscosity ratio, μr, and Ca′, the modified capillary number for constant flow rate, or ΔPs˙W/σ, for constant driving pressure difference. Morphology diagrams are developed to identify the ranges of the dimensionless parameters corresponding to the various finger patterns. The simulation results are validated with experiments.


Sign in / Sign up

Export Citation Format

Share Document