Zinc Isotopes in the Seine River Waters, France: A Probe of Anthropogenic Contamination

2008 ◽  
Vol 42 (17) ◽  
pp. 6494-6501 ◽  
Author(s):  
Jiubin Chen ◽  
Jérôme Gaillardet ◽  
Pascale Louvat
2019 ◽  
Vol 13 (2) ◽  
pp. 52-58
Author(s):  
V. B. Korobov ◽  
I. V. Miskevich ◽  
A. S. Lokhov ◽  
K. A. Seredkin

Abstract: pH is one of the most important parameters characterizing the state of water systems. The arithmetic mean values of samples are often used when averaging serial pH measurements in water bodies, as is usually done for other characteristics of the state of the natural environment (temperature, salinity, oxygen concentrations, suspended solids, etc.). However, in this case such an operation is illegal, since the addition of logarithms, which by definition are pH, is non-additive. The authors conducted a study to determine the extent to which pH variability in natural objects such an operation would not distort the results. For this, several samples of the pH index were generated in various ranges of its theoretically possible and natural variability. It was established that with pH variability of less than a unit characteristic of marine pH values, the statistical characteristics of the indicator and [H+ ] concentrations differ slightly, and the medians of the samples coincide. It is concluded that with such ranges characteristic of the waters of the oceans, there is no need to recalculate previously obtained results. However, for the estuaries of rivers flowing into tidal seas, as shown by field measurements, the pH variability in the mixing zone of sea and river waters is several times higher. Similar situations may occur when heavy precipitation falls on the water surface, as well as during floods. In these cases, a simple averaging of the pH values will no longer be correct. In such cases, the use of other averaging algorithms and the choice of stable statistical characteristics are required.


2020 ◽  
Vol 495 (1) ◽  
pp. 858-861
Author(s):  
V. N. Sinyukovich ◽  
V. G. Shiretorova ◽  
I. V. Tomberg ◽  
L. M. Sorokovikova ◽  
L. D. Radnaeva ◽  
...  

Author(s):  
Agata Di Noi ◽  
Silvia Casini ◽  
Tommaso Campani ◽  
Giampiero Cai ◽  
Ilaria Caliani

Honey bees and the pollination services they provide are fundamental for agriculture and biodiversity. Agrochemical products and other classes of contaminants, such as trace elements and polycyclic aromatic hydrocarbons, contribute to the general decline of bees’ populations. For this reason, effects, and particularly sublethal effects of contaminants need to be investigated. We conducted a review of the existing literature regarding the type of effects evaluated in Apis mellifera, collecting information about regions, methodological approaches, the type of contaminants, and honey bees’ life stages. Europe and North America are the regions in which A. mellifera biological responses were mostly studied and the most investigated compounds are insecticides. A. mellifera was studied more in the laboratory than in field conditions. Through the observation of the different responses examined, we found that there were several knowledge gaps that should be addressed, particularly within enzymatic and molecular responses, such as those regarding the immune system and genotoxicity. The importance of developing an integrated approach that combines responses at different levels, from molecular to organism and population, needs to be highlighted in order to evaluate the impact of anthropogenic contamination on this pollinator species.


2020 ◽  
Vol 32 (1) ◽  
Author(s):  
Mulatu Yohannes Nanusha ◽  
Martin Krauss ◽  
Carina D. Schönsee ◽  
Barbara F. Günthardt ◽  
Thomas D. Bucheli ◽  
...  

Abstract Background Substantial efforts have been made to monitor potentially hazardous anthropogenic contaminants in surface waters while for plant secondary metabolites (PSMs) almost no data on occurrence in the water cycle are available. These metabolites enter river waters through various pathways such as leaching, surface run-off and rain sewers or input of litter from vegetation and might add to the biological activity of the chemical mixture. To reduce this data gap, we conducted a LC–HRMS target screening in river waters from two different catchments for 150 plant metabolites which were selected from a larger database considering their expected abundance in the vegetation, their potential mobility, persistence and toxicity in the water cycle and commercial availability of standards. Results The screening revealed the presence of 12 out of 150 possibly toxic PSMs including coumarins (bergapten, scopoletin, fraxidin, esculetin and psoralen), a flavonoid (formononetin) and alkaloids (lycorine and narciclasine). The compounds narciclasine and lycorine were detected at concentrations up to 3 µg/L while esculetin and fraxidin occurred at concentrations above 1 µg/L. Nine compounds occurred at concentrations above 0.1 µg/L, the Threshold for Toxicological Concern (TTC) for non-genotoxic and non-endocrine disrupting chemicals in drinking water. Conclusions Our study provides an overview of potentially biologically active PSMs in surface waters and recommends their consideration in monitoring and risk assessment of water resources. This is currently hampered by a lack of effect data including toxicity to aquatic organisms, endocrine disruption and genotoxicity and demands for involvement of these compounds in biotesting.


2021 ◽  
Vol 11 (2) ◽  
Author(s):  
Arjun Ram ◽  
S. K. Tiwari ◽  
H. K. Pandey ◽  
Abhishek Kumar Chaurasia ◽  
Supriya Singh ◽  
...  

AbstractGroundwater is an important source for drinking water supply in hard rock terrain of Bundelkhand massif particularly in District Mahoba, Uttar Pradesh, India. An attempt has been made in this work to understand the suitability of groundwater for human consumption. The parameters like pH, electrical conductivity, total dissolved solids, alkalinity, total hardness, calcium, magnesium, sodium, potassium, bicarbonate, sulfate, chloride, fluoride, nitrate, copper, manganese, silver, zinc, iron and nickel were analysed to estimate the groundwater quality. The water quality index (WQI) has been applied to categorize the water quality viz: excellent, good, poor, etc. which is quite useful to infer the quality of water to the people and policy makers in the concerned area. The WQI in the study area ranges from 4.75 to 115.93. The overall WQI in the study area indicates that the groundwater is safe and potable except few localized pockets in Charkhari and Jaitpur Blocks. The Hill-Piper Trilinear diagram reveals that the groundwater of the study area falls under Na+-Cl−, mixed Ca2+-Mg2+-Cl− and Ca2+-$${\text{HCO}}_{3}^{ - }$$ HCO 3 - types. The granite-gneiss contains orthoclase feldspar and biotite minerals which after weathering yields bicarbonate and chloride rich groundwater. The correlation matrix has been created and analysed to observe their significant impetus on the assessment of groundwater quality. The current study suggests that the groundwater of the area under deteriorated water quality needs treatment before consumption and also to be protected from the perils of geogenic/anthropogenic contamination.


Anthropocene ◽  
2021 ◽  
Vol 33 ◽  
pp. 100283
Author(s):  
Ondřej Bábek ◽  
Jan Sedláček ◽  
Zuzana Lenďáková ◽  
Jitka Elznicová ◽  
Jitka Tolaszová ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document