Preparation of a Research Jet Fuel Composition Comprised of Nearly Exclusively Methyl-Branched Tetradecane Isomers Having a Freezing Point below −47 °C

2012 ◽  
Vol 51 (31) ◽  
pp. 10313-10319 ◽  
Author(s):  
Heinz J. Robota ◽  
Jhoanna C. Alger
Fuel ◽  
2021 ◽  
Vol 293 ◽  
pp. 120472
Author(s):  
Pachara Chintakanan ◽  
Tharapong Vitidsant ◽  
Prasert Reubroycharoen ◽  
Prapan Kuchonthara ◽  
Tetsuya Kida ◽  
...  

Author(s):  
Tak W. Chan ◽  
Pervez Canteenwalla ◽  
Wajid A. Chishty

The effects of altitude and fuel composition on gaseous and particle emissions from a turbojet engine were investigated as part of the National Jet Fuels Combustion Program (NJFCP) effort. Two conventional petroleum based jet fuels (a “nominal” and a “worst-case” jet fuel) and two test fuels with unique characteristics were selected for this study. The “worst-case” conventional jet fuel with high flash point and viscosity resulted in reduced combustion efficiency supported by the reduced CO2 emissions and corresponding increased CO and THC emissions. In addition, increased particle number (PN), particle mass (PM), and black carbon (BC) emissions were observed. Operating the engine on a bimodal fuel, composed of heavily branched C12 and C16 iso-paraffinic hydrocarbons with an extremely low cetane number did not significantly impact the engine performance or gaseous emissions but significantly reduced PN, PM, and BC emissions when compared to other fuels. The higher aromatic content and lower hydrogen content in the C-5 fuel were observed to increase PN, PM, and BC emissions. It is also evident that the type of aromatic hydrocarbons has a large impact on BC emissions. Reduction in combustion efficiency resulted in reduced CO2 emissions and increased CO and THC emissions from this engine with increasing altitudes. PN emissions were moderately influenced by altitude but PM and BC emissions were significantly reduced with increasing altitude. The reduced BC emissions with increasing altitude could be a result of reduced combustion temperature which lowered the rate of pyrolysis for BC formation, which is supported by the NOx reduction trend.


2018 ◽  
Vol 2 (8) ◽  
pp. 1863-1869 ◽  
Author(s):  
Jiawei Xie ◽  
Lei Zhang ◽  
Xiangwen Zhang ◽  
Peijuan Han ◽  
Junjian Xie ◽  
...  

Biofuels synthesized from lignocellulose-derived platform chemicals are very attractive for sustainable development.


Author(s):  
Xiaoyu Wang ◽  
Tinghao Jia ◽  
Lun Pan ◽  
Qing Liu ◽  
Yunming Fang ◽  
...  

AbstractThe development of advanced air transportation has raised new demands for high-performance liquid hydrocarbon fuels. However, the measurement of fuel properties is time-consuming, cost-intensive, and limited to the operating conditions. The physicochemical properties of aerospace fuels are directly influenced by chemical composition. Thus, a thorough investigation should be conducted on the inherent relationship between fuel properties and composition for the design and synthesis of high-grade fuels and the prediction of fuel properties in the future. This work summarized the effects of fuel composition and hydrocarbon molecular structure on the fuel physicochemical properties, including density, net heat of combustion (NHOC), low-temperature fluidity (viscosity and freezing point), flash point, and thermal-oxidative stability. Several correlations and predictions of fuel properties from chemical composition were reviewed. Additionally, we correlated the fuel properties with hydrogen/carbon molar ratios (nH/C) and molecular weight (M). The results from the least-square method implicate that the coupling of H/C molar ratio and M is suitable for the estimation of density, NHOC, viscosity and effectiveness for the design, manufacture, and evaluation of aviation hydrocarbon fuels.


2016 ◽  
Vol 10 (4) ◽  
pp. 485-492 ◽  
Author(s):  
Anna Iakovlieva ◽  
◽  
Oksana Vovk ◽  
Sergii Boichenko ◽  
Kazimierz Lejda ◽  
...  

The work is devoted to the development of alternative jet fuel blended with rapeseed oil-derived biocomponents and study of their physical-chemical properties. The modification of conventional jet fuel by rapeseed oil esters was chosen for this work among the variety of technologies for alternative jet fuels development. The main characteristics of conventional jet fuel and three kinds of biocomponents were determined and compared to the standards requirements to jet fuel of Jet A-1 grade. The most important or identifying physical-chemical properties of jet fuels were determined for the scope of this study. Among them are: density, viscosity, fractional composition, freezing point and net heat of combustion. The influence of rapeseed oil-derived biocomponents on the mentioned above characteristics of blended jet fuels was studied and explained.


Catalysts ◽  
2019 ◽  
Vol 9 (11) ◽  
pp. 886 ◽  
Author(s):  
Wei Wang ◽  
Shaoying Sun ◽  
Fengan Han ◽  
Guangyi Li ◽  
Xianzhao Shao ◽  
...  

Diesel and jet fuel range cycloalkanes were obtained in ~84.8% overall carbon yield with cyclopentanone and furfural, which can be produced from hemicellulose. Firstly, 2,5-bis(furan-2-ylmethyl)-cyclopentanone was prepared by the aldol condensation/hydrogenation reaction of cyclopentanone and furfural under solid base and selective hydrogenation catalyst. Over the optimized catalyst (Pd/C-CaO), 98.5% carbon yield of 2,5-bis(furan-2-ylmethyl)-cyclopentanone was acquired at 423 K. Subsequently, the 2,5-bis(furan-2-ylmethyl)-cyclopentanone was further hydrodeoxygenated over the M/H-ZSM-5(Pd, Pt and Ru) catalyst. Overall, 86.1% carbon yield of diesel and jet fuel range cycloalkanes was gained over the Pd/H-ZSM-5 catalyst under solvent-free conditions. The cycloalkane mixture obtained in this work has a high density (0.82 g mL−1) and a low freezing point (241.7 K). Therefore, it can be mixed into diesel and jet fuel to increase their volumetric heat values or payloads.


2020 ◽  
Vol 44 (1) ◽  
Author(s):  
R. El-Araby ◽  
E. Abdelkader ◽  
G. El Diwani ◽  
S. I. Hawash

Abstract Background Biomass fuels (bio-jet fuel) have recently attracted considerable attention as alternatives to conventional jet fuel. They have become the focus of aircraft manufacturers, engines, oil companies, governments and researchers alike. This study is concerned with the production of biojet fuel using waste cooking oil (WCO). Batch reactor is used for running the experimental study. The catalytic cracking products are investigated by GC mass spectra. Final products from different reaction conditions are subjected to fractional distillation. The (Bio kerosene) fraction was compared with the conventional jet A-1 and showed that it met the basic jet fuel specifications. Optimum reaction conditions are obtained at (450 °C), pressure of (120 bars), catalyst dose (2.5% w/v), reaction time (60 min) and hydrogen pressure 4 atmosphere. The aim of this study is to produce bio aviation fuel according to specifications and with a low freezing point from waste cooking oil in one step using a laboratory prepared catalyst and with a low percentage of hydrogen to complete the process of cracking and deoxygenation in one reactor, which is naturally reflected positively on the price of the final product of bio aviation fuel. Results The results indicated that the product obtained from WCO shows promising potential bio aviation fuels, having a low freezing point (− 55 °C) and that all bio kerosene’s specifications obtained at these conditions follow the international standard specifications of aviation turbine fuel. Conclusion Biojet fuel obtained from WCO has fairly acceptable physico-chemical properties compared to those of petroleum-based fuel. Adjustment of the hydro catalytic cracking reaction conditions was used to control quantities and characteristics of produced bio aviation fuel. Taking into consideration the economic evaluation WCO is preferable as raw material for bio aviation fuel production due to its low cost and its contribution in environmental pollution abatement. Blend of 5% bio aviation with jet A-1 (by volume) can be used in the engine without any modifications and a successful test of blended aviation fuel with 10% bio aviation has been achieved on Jet-Cat 80/120 engine.


Author(s):  
Jennifer Lindsey Suder Klettlinger

Fischer-Tropsch (F-T) jet fuel composition differs from petroleum-based, conventional commercial jet fuel because of differences in feedstock and production methodology. Fischer-Tropsch fuel typically has a lower aromatic and sulfur content and consists primarily of iso and normal parafins. The ASTM D3241 specification for Jet Fuel Thermal Oxidation Test (JFTOT) break point testing method was used to test the breakpoint of a baseline commercial grade F-T jet fuel, and various blends of this F-T fuel with an aromatic solution. The goal of this research is to determine the effect of aromatic content on the thermal stability of Fischer-Tropsch fuel. The testing completed in this report was supported by the NASA Fundamental Aeronautics Subsonics Fixed Wing Project.


Sign in / Sign up

Export Citation Format

Share Document