Coconut Oil Refining

1924 ◽  
Vol 16 (4) ◽  
pp. 341-346
Author(s):  
Alan Porter Lee
Keyword(s):  
2020 ◽  
Vol 4 (3) ◽  
pp. 482-489
Author(s):  
Maherawati ◽  
Iman Suswanto

Traditional coconut oil has the potential to be developed into commercial oil. These community service activities are a) coconut oil production practices, b) introduction of coconut oil refining technology and c) assessment of people's perceptions of coconut oil production. The variables used are the process of making oil, product quality, technology transfer and people's motivation to make oil. Questionnaire data were analyzed with contingencies to show the close relationship between variables and community groups. The results of the activity showed that there were two ways of making traditional coconut oil, using fresh coconut milk and fermented coconut milk. The resulting oil is crude coconut oil with a characteristic rancid odor, dark color and not durable. The process of oil production is a variable that shows real differences between young and old groups, while other variables are not significantly different. As many as 75% of young group respondents stated that the process of making coconut oil at a somewhat difficult to difficult level. The close relationship between the respondent group and the process of making coconut oil has high accuracy, which is 0.64. Improving coconut oil manufacturing techniques with the refining process can be one way to improve quality and efforts to support the commercialization of traditional coconut oil.


2020 ◽  
Vol 4 (1) ◽  
pp. 37
Author(s):  
Nining Putri Kurnianingsih ◽  
Maherwati Maherawati ◽  
Tri Rahayuni

Coconut oil in West Kalimantan is still largely a traditional coconut oil because it has not gone through a refining process. To improve the quality of traditional coconut oil, the addition of activated charcoal can be used as an adsorbent so as to improve the quality of coconut oil. Activated charcoal can be made from materials that contain high carbon, one of which is a coconut shell. The purpose of this study was to determine the effect of adding activated charcoal to improving the quality of traditional coconut oil and the concentration of adding activated charcoal that produced the best characteristics of coconut oil. The research design used was a Randomized Block Design with one factor (coconut shell active charcoal concentration) 6 levels of treatment (0%, 1%, 2%, 3%, 4%, 5%) with 4 replications. The data obtained were analyzed using ANOVA (ɑ = 5%) if there was an influence followed by BNJ test (ɑ = 5%). The results showed that the addition of coconut shell activated charcoal with a concentration of 1% -5% to traditional coconut oil can significantly reduce free fatty acid levels. In addition, the addition of activated charcoal affects the sensory attributes of color and aroma to be better than the control (without the addition of activated charcoal). The best traditional coconut oil produced in this study is traditional coconut oil added with coconut shell activated charcoal with a concentration of 5% with chemical and sensory characteristics as follows: water content 0.138%, free fatty acid content 0.428%, saponification number 231, 9 mg KOH / g, color value 4,88, and aroma value 3,68.Keywords: adsorbent, activated charcoal, coconut oil, refining, coconut shell


2012 ◽  
pp. 124-131
Author(s):  
Yu. Astashov

The article considers the state of things in Russian oil refining. The options for its modernization are analyzed, as well as the effects of tax reforms in the sector. It is noted that current tax reforms mostly touch upon refining, not oil extraction, so one can expect further reforms in the sector and their impact on the industry.


2020 ◽  
pp. 28-43
Author(s):  
A. S. Kaukin ◽  
E. М. Miller

The paper analyzes the consequences of the abolition of the export duty on oil and oil products as a necessary step to stimulate energy efficiency of Russia’s economy and eliminate underdevelopment provoked by a long-term subsidizing of inefficient oil refining sector in Russia. The calculation results have shown that even taking into account several deviations from the planned scenarios of changing the parameters of tax regulation of the oil industry in 2014— 2019, the tax maneuver brought over 3.5 trillion rubles (in 2019 — 148 billion rubles) to the state budget in 2014—2017, mainly due to an increase in the base mineral extraction tax rate, and contributed to an increase in the depth of oil refining from 72% to 85%. In addition, the article analyzes possible risks associated with the current plan for reforming the taxation of the industry until 2024 and proposes an alternative that could level some of them. A comparative analysis of the effects of the tax maneuver under the current reform plan and the alternative variant suggests that the latter will allow to achieve a greater total budgetary effect in four years, reduce the cost of subsidizing domestic oil refining, increase the efficiency of Russian vertically integrated oil companies, and reduce the growth rate of oil products prices in the retail market.


2021 ◽  
Author(s):  
Василий Садовников

This monograph is a continuation of the monograph by V.V. Sadovnikov. Lateral interaction. Moscow 2006. Publishing house "Anta-Eco", 2006. ISBN 5-9730-0017-6. In this work, the foundations of the theory of heterogeneous catalysis and the theory of chemisorption are more easily formulated. The book consists of two parts, closely related to each other. These are the theoretical foundations of heterogeneous catalysis and chemisorption. In the theory of heterogeneous catalysis, an experiment is described in detail, which must be carried out in order to isolate the stages of a catalytic reaction, to find the stoichiometry of each of the stages. This experiment is based on the need to obtain the exact value of the specific surface area of the catalyst, the number of centers at which the reaction proceeds, and the output curves of each of the reaction products. The procedures for obtaining this data are described in detail. Equations are proposed and solved that allow calculating the kinetic parameters of the nonequilibrium stage and the thermodynamic parameters of the equilibrium stage. The description of the quantitative theory of chemisorption is based on the description of the motion of an atom along a crystal face. The axioms on which this mathematics should be based are formulated, the mathematical apparatus of the theory is written and the most detailed instructions on how to use it are presented. The first axiom: an atom, moving along the surface, is present only in places with minima of potential energy. The second axiom: the face of an atom is divided into cells, and the position of the atom on the surface of the face is set by one parameter: the cell number. The third axiom: the atom interacts with the surrounding material bodies only at the points of minimum potential energy. The fourth axiom: the solution of the equations is a map of the arrangement of atoms on the surface. The fifth axiom: quantitative equations are based on the concept of a statistically independent particle. The formation energies of these particles and their concentration are calculated by the developed program. The program based on these axioms allows you to simulate and calculate the interaction energies of atoms on any crystal face. The monograph is intended for students, post-graduate students and researchers studying work and working in petrochemistry and oil refining.


2020 ◽  
Vol 5 (1) ◽  
Author(s):  
Aulia Alfi

Virgin Coconut Oil (VCO) adalah bahan alami yang memiliki sifat antimikroba (antivirus, antibakteri, dan antijamur). Sehingga VCO dapat memberikan efek pengawet pada bahan makanan, salah satunya adalah roti manis. Penelitian ini dilakukan untuk mengevaluasi pengaruh VCO terhadap karakteristik (fisik dan kimia) dan umur simpan roti manis. Roti manis dianalisis secara fisik (tekstur dan porositas) dan kimia (kadar air, kadar abu, kadar lemak, kadar protein, dan kandungan karbohidrat), dan analisis umur simpan dengan FFA, uji organoleptik dan jamur setiap dua hari selama delapan hari penyimpanan di suhu ruang. Variasi perlakuan roti manis adalah dari rasio konsentrasi VCO: margarin: mentega, K (0%: 8%: 8%); A (4%: 6%: 6%); B (8%: 4%: 4%), C (12%: 2%: 2%); D (16%: 0%: 0%). Hasil penelitian menunjukkan bahwa VCO tidak memiliki pengaruh yang signifikan terhadap karakteristik fisik dan karakteristik kimia roti manis. Namun, VCO berpengaruh signifikan terhadap kadar air roti manis yang dihasilkan, roti manis K memiliki kadar air tertinggi (22,36%) dan berbeda dengan sampel roti manis lainnya. VCO secara efektif menghambat pertumbuhan jamur di roti manis pada konsentrasi 8%, 12%, dan 16%. Roti manis K dan A memiliki masa simpan 4 hari, sedangkan roti manis B, C, dan D memiliki masa simpan 6 hari.Kata kunci: VCO, roti manis, karakteristik, umur simpanABSTRACTVirgin Coconut Oil (VCO) is a natural ingredient that has antimicrobial (antiviral, antibacterial, and antifungal) properties. So that VCO can provide a preservative effect on food ingredients, one of which is sweet bread. This research was conducted to evaluate the effect of VCO on characteristics (physical and chemical) and shelf life of sweet bread. Sweet bread was analyzed physically (texture and porosity) and chemistry (moisture content, ash content, fat content, protein content, and carbohydrate content), and shelf life analysis with FFA, organoleptic and mold tests every two days for eight days of storage at ambient temperature. Treatment variations of sweet breads is from the ratio of the concentration of VCO: margarine: butter, K (0%: 8%: 8%); A (4%: 6%: 6%); B (8%: 4%: 4%), C (12%: 2%: 2%); D (16%: 0%: 0%). The results showed that VCO did not have a significant effect on the physical characteristics and chemical characteristics of sweet bread. However, the VCO has a significant effect on the water content of the sweet bread produced, sweet bread K has the highest moisture content (22,36%) and it is different from other sweet bread samples. VCO effectively inhibits the growth of sweet bread mold at concentrations of 8%, 12%, and 16%. K and A sweet bread has a shelf life of 4 days, while sweet breads B, C, and D have a shelf life of 6 days.Keywords: VCO, sweet bread, characteristics, shelf life


Sign in / Sign up

Export Citation Format

Share Document