Synergistic Effects of Ionic Characteristics of Surfactants on Aqueous Foam Stability, Gel Strength, and Rheology in the Presence of Neutral Polymer

2014 ◽  
Vol 53 (49) ◽  
pp. 19184-19191 ◽  
Author(s):  
Amit Saxena ◽  
A. K. Pathak ◽  
Keka Ojha
2015 ◽  
Vol 23 (1) ◽  
pp. 276-280 ◽  
Author(s):  
Yongqiang Zhang ◽  
Zhidong Chang ◽  
Wenli Luo ◽  
Shaonan Gu ◽  
Wenjun Li ◽  
...  

2019 ◽  
Vol 19 (4) ◽  
pp. 985
Author(s):  
Mohd Zulkifli Bin Mohamad Noor ◽  
Wong Yi Teng ◽  
Sonny Irawan

Nanoparticles have emerged with substantially to the end user and industrial applications. The applications initiated to enhance oil recovery (EOR) and also as alternative solution in increasing the rheological properties of fluids at difference condition. The study aims to evaluate the effects of various surfactant and nanoparticle concentration as well as hydrocarbons on foam stability. Series of static state experiments were conducted to investigate the foam development stability of five different concentrations for surfactant from 0.05 to 0.25 wt.% and nanoparticle from 0 to 1.00 wt.% in the presence of white mineral oil in synthetic brine suspension. By discussing to the Ross-Miles method - half-life capacities (t½), the foam stability of the aqueous foam was expected. Results suggested that the foam stability is increase with the present of nanoparticle. The 0.5 wt.% SiO2 nanoparticles enhanced foam formed the most lasting in the absence of white mineral oil as its t½ in presence of oil is 0.6 times smaller than in the absence of oil. It is concluded that the presence of nanoparticles for surfactant foam stability can be enhanced. The used of nanoparticles can be further study with different type of nanoparticles, only with small amount of nanoparticles used can further stabilize the foam.


SPE Journal ◽  
2019 ◽  
Vol 25 (01) ◽  
pp. 416-431 ◽  
Author(s):  
Songyan Li ◽  
Qun Wang ◽  
Zhaomin Li

Summary Foam flooding is an important method used to protect oil reservoirs and increase oil production. However, the research on foam fluid is generally focused on aqueous foam, and there are a few studies on the stability mechanism of oil-based foam. In this paper, a compound surfactant consisting of Span® 20 and a fluorochemical surfactant is determined as the formula for oil-based foam. The foam volume and half-life in the bulk phase are measured to be 275 mL and 302 seconds, respectively, at room temperature and atmospheric pressure. The stability mechanism of oil-based foam is proposed by testing the interfacial tension (IFT) and interfacial viscoelasticity. The lowest IFT of 18.5 mN/m and the maximum viscoelasticity modulus of 16.8 mN/m appear at the concentration of 1.0 wt%, resulting in the most-stable oil-based foam. The effect of oil viscosity and temperature on the properties of oil-based foam is studied. The foam stability increases first and then decreases with the rising oil viscosity, and the stability decreases with rising temperature. The apparent viscosity of oil-based foam satisfies the power-law non-Newtonian properties, and this viscosity is much higher than that of the phases of oil and CO2. The flow of oil-based foam in porous media is studied through microscopic-visualization experiments. Bubble division, bubble merging, and bubble deformation occur during oil-based-foam flow in porous media. The oil-recovery efficiency of the oil-based-foam flooding is 78.3%, while the oil-recovery efficiency of CO2 flooding is only 28.2%. The oil recovery is enhanced because oil-based foam reduces CO2 mobility, inhibits gas channeling, and improves sweep efficiency. The results are meaningful for CO2 mobility control and for the application of foam flooding for enhanced oil recovery (EOR).


1994 ◽  
Vol 48 ◽  
pp. 93-120 ◽  
Author(s):  
R. Aveyard ◽  
B.P. Binks ◽  
P.D.I. Fletcher ◽  
T.G. Peck ◽  
C.E. Rutherford

2021 ◽  
pp. 2397-2409
Author(s):  
Dellen Naomi Matulessy ◽  
Yuny Erwanto ◽  
Nurliyani Nurliyani ◽  
Edi Suryanto ◽  
Mohammad Zainal Abidin ◽  
...  

Background and Aim: Gelatin is a dissolved protein that results from partial extraction of collagen, commonly from pig and bovine skin. There was no study on gelatin production from Kacang goat bones through enzymatic extraction. This study aimed to evaluate the chemical, physical, and functional properties of gelatin from bones of Kacang goat using alcalase and neutrase enzymes. Materials and Methods: Male Kacang goat bones aged 6-12 months and two commercial enzymes (alcalase and neutrase) were used for this study. Descriptive analysis and completely randomized design (one-way analysis of variance) were used to analyze the chemical, physical, and functional properties of gelatin. Kacang goat bone was extracted with four concentrations of alcalase and neutrase enzymes, namely, 0 U/g (AG-0 and NG-0), 0.02 U/g (AG-1 and NG-1), 0.04 U/g (AG-2 and NG-2), and 0.06 U/g (AG-3 and NG-3) with five replications. Results: The highest yield of gelatin extraction with alcalase obtained on AG-3 was 9.78%, and that with neutrase on NG-3 was 6.35%. The moisture content of alcalase gelatin was 9.39-9.94%, and that of neutrase gelatin was 9.15-9.24%. The ash and fat content of gelatin with alcalase was lower than that without enzyme treatment with higher protein content. The lowest fat content was noted in AG-1 (0.50%), with protein that was not different for all enzyme concentrations (69.65-70.21%). Gelatin with neutrase had lower ash content than that without neutrase (1.61-1.90%), with the highest protein content in NG-3 (70.89%). The pH of gelatin with alcalase and neutrase was 6.19-6.92 lower than that without enzymes. Melting points, gel strength, and water holding capacity (WHC) of gelatin with the highest alcalase levels on AG-1 and AG-2 ranged from 28.33 to 28.47°C, 67.41 to 68.14 g bloom, and 324.00 to 334.67%, respectively, with viscosity that did not differ, while the highest foam expansion (FE) and foam stability (FS) were noted in AG-1, which were 71.67% and 52.67%, respectively. The highest oil holding capacity (OHC) was found in AG-2 (283%). FS and OHC of gelatins with the highest neutrase levels in NG-2 were 30.00% and 265.33%, respectively, while gel strength, viscosity, FE, and WHC of gelatins with the highest neutrase levels did not differ with those without enzymes at all enzyme concentrations. B chain was degraded in all gelatins, and high-intensity a-chains in gelatin with alcalase and peptide fraction were formed in gelatin with neutrase. Extraction with enzymes showed loss of the triple helix as demonstrated by Fourier transform infrared spectroscopy. Conclusion: Based on the obtained results, the Kacang goat bone was the potential raw source for gelatin production. Enzymatic extraction can increase the quality of gelatin, especially the alcalase (0.02-0.04 U/g bone) method. This can be used to achieve the preferable quality of gelatin with a higher yield.


Sign in / Sign up

Export Citation Format

Share Document