Real-Time Sizing of Nanoparticles in Microfluidic Channels Using Confocal Correlation Spectroscopy

2006 ◽  
Vol 128 (3) ◽  
pp. 730-731 ◽  
Author(s):  
Christopher L. Kuyper ◽  
Kristi L. Budzinski ◽  
Robert M. Lorenz ◽  
Daniel T. Chiu
2018 ◽  
Vol 25 (4) ◽  
pp. 1135-1143 ◽  
Author(s):  
Faisal Khan ◽  
Suresh Narayanan ◽  
Roger Sersted ◽  
Nicholas Schwarz ◽  
Alec Sandy

Multi-speckle X-ray photon correlation spectroscopy (XPCS) is a powerful technique for characterizing the dynamic nature of complex materials over a range of time scales. XPCS has been successfully applied to study a wide range of systems. Recent developments in higher-frame-rate detectors, while aiding in the study of faster dynamical processes, creates large amounts of data that require parallel computational techniques to process in near real-time. Here, an implementation of the multi-tau and two-time autocorrelation algorithms using the Hadoop MapReduce framework for distributed computing is presented. The system scales well with regard to the increase in the data size, and has been serving the users of beamline 8-ID-I at the Advanced Photon Source for near real-time autocorrelations for the past five years.


2013 ◽  
Vol 543 ◽  
pp. 431-434 ◽  
Author(s):  
Kazunari Ozasa ◽  
Jee Soo Lee ◽  
Simon Song ◽  
Masahiko Hara ◽  
Mizuo Maeda

We investigated on-chip cytotoxicity gas sensing using the bacterial chemotaxis of Euglena confined in a microaquarium. The sensor chip made from PDMS had one microaquarium and two microfluidic channels passing aside of the microaquarium. The chemotactic microbial cells were confined in the microaquarium, whereas two gases (one sample and one reference) flowed in the two isolated microchannels. Gas molecules move from the microchannels into the microaquarium by permeation through porous PDMS wall, and dissolve into the water in the microaquarium, where Euglena cells are swimming. The chemotactic movements of Euglena were observed with an optical microscope and measured as traces in real time. By injecting CO2 and air into each microchannel separately, the Euglena cells in the microaquarium moved to air side, escaping from CO2. This observation showed that the concentration gradient of CO2 was produced in the water in the microaquarium. The CO2-avoiding movement of Euglena was increased largely at a CO2 concentration of 40%, and then moderately increased above 60%. Some Euglena cells stopped swimming at the air side of the microaquarium and remained there even after CO2 has been removed, which can be used as the indicator of CO2 history.


2019 ◽  
Author(s):  
Paul A. Dalgarno ◽  
José Juan-Colás ◽  
Gordon J. Hedley ◽  
Lucas Piñeiro ◽  
Mercedes Novo ◽  
...  

AbstractThe solubilization of membranes by detergents is critical for many technological applications and has become widely used in biochemistry research to induce cell rupture, extract cell constituents, and to purify, reconstitute and crystallize membrane proteins. The thermodynamic details of solubilization have been extensively investigated, but the kinetic aspects remain poorly understood. Here we used a combination of single-vesicle Förster resonance energy transfer (svFRET), fluorescence correlation spectroscopy and quartz-crystal microbalance with dissipation monitoring to access the real-time kinetics and elementary solubilization steps of sub-micron sized vesicles, which are inaccessible by conventional diffraction-limited optical methods. Real-time injection of a non-ionic detergent, Triton X, induced biphasic solubilization kinetics of surface-immobilized vesicles labelled with the Dil/DiD FRET pair. The nanoscale sensitivity accessible by svFRET allowed us to unambiguously assign each kinetic step to distortions of the vesicle structure comprising an initial fast vesicle-swelling event followed by slow lipid loss and micellization. We expect the svFRET platform to be applicable beyond the sub-micron sizes studied here and become a unique tool to unravel the complex kinetics of detergent-lipid interactions.


2013 ◽  
Vol 104 (2) ◽  
pp. 573a
Author(s):  
Matthew D. Weitzman ◽  
Chandran R. Sabanayagam ◽  
Kenneth L. van Golen

Nanoscale ◽  
2020 ◽  
Vol 12 (21) ◽  
pp. 11518-11525 ◽  
Author(s):  
Rachael L. Grime ◽  
Joelle Goulding ◽  
Romez Uddin ◽  
Leigh A. Stoddart ◽  
Stephen J. Hill ◽  
...  

Combining the technologies of encapsulation of GPCRs in SMA lipid particles with fluorescence correlation spectroscopy provides a versatile characterisation platform.


Sign in / Sign up

Export Citation Format

Share Document