High Surface Area Nafion†Resin/Silica Nanocomposites:  A New Class of Solid Acid Catalyst

1996 ◽  
Vol 118 (33) ◽  
pp. 7708-7715 ◽  
Author(s):  
Mark A. Harmer ◽  
William E. Farneth ◽  
Qun Sun
2020 ◽  
Vol 12 (42) ◽  
pp. 47389-47396 ◽  
Author(s):  
Dinithi Rathnayake ◽  
Inosh Perera ◽  
Alireza Shirazi-Amin ◽  
Peter Kerns ◽  
Shanka Dissanayake ◽  
...  

CrystEngComm ◽  
2020 ◽  
Vol 22 (38) ◽  
pp. 6275-6286
Author(s):  
Esun Selvam ◽  
Rajesh K. Parsapur ◽  
Carlos E. Hernandez-Tamargo ◽  
Nora H. de Leeuw ◽  
Parasuraman Selvam

Nano-zeolite with brain-coral morphology formed by self-organization of ultra-small nanospheres, exhibits micro/meso porosity with high surface area, distributed acid sites, and reduced diffusion resistance making it a promising solid acid catalyst.


Molecules ◽  
2021 ◽  
Vol 26 (9) ◽  
pp. 2519
Author(s):  
Arindam Modak ◽  
Akshay R. Mankar ◽  
Kamal Kishore Pant ◽  
Asim Bhaumik

Solid acid catalysts occupy a special class in heterogeneous catalysis for their efficiency in eco-friendly conversion of biomass into demanding chemicals. We synthesized porphyrin containing porous organic polymers (PorPOPs) using colloidal silica as a support. Post-modification with chlorosulfonic acid enabled sulfonic acid functionalization, and the resulting material (PorPOPS) showed excellent activity and durability for the conversion of fructose to 5-hydroxymethyl furfural (HMF) in green solvent water. PorPOPS composite was characterized by N2 sorption, FTIR, TGA, CHNS, FESEM, TEM and XPS techniques, justifying the successful synthesis of organic networks and the grafting of sulfonic acid sites (5 wt%). Furthermore, a high surface area (260 m2/g) and the presence of distinct mesopores of ~15 nm were distinctly different from the porphyrin containing sulfonated porous organic polymer (FePOP-1S). Surprisingly the hybrid PorPOPS showed an excellent yield of HMF (85%) and high selectivity (>90%) in water as compared to microporous pristine-FePOP-1S (yield of HMF = 35%). This research demonstrates the requirement of organic modification on silica surfaces to tailor the activity and selectivity of the catalysts. We foresee that this research may inspire further applications of biomass conversion in water in future environmental research.


Proceedings ◽  
2019 ◽  
Vol 41 (1) ◽  
pp. 14
Author(s):  
Hossein Ghafuri ◽  
Peyman Hanifehnejad ◽  
Zeynab Rezazadeh ◽  
Afsaneh Rashidizadeh

Currently, constructing solid acid catalysts with well-defined structures, environmentally benign, with high catalytic activity, easy separation, and high chemical stability is the most important area of industrial and environmental concern. Over the past few decades, porous conjugated polymers have been employed as stable catalyst supports for various organic transformations. Among these materials, graphitic carbon nitride (g-C3N4) has been widely studied in the field of photocatalysis and heterogeneous catalysis, due to its high surface area and great physical and chemical stability. Herein, we report the synthesis of sulfonated graphitic carbon nitride (Sg-C3N4) as an efficient solid acid catalyst for the preparation of various biologically nitrogen-containing heterocyclic compounds under mild reaction conditions.


Nanomaterials ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 747
Author(s):  
Mahashanon Arumugam ◽  
Chee Keong Goh ◽  
Zulkarnain Zainal ◽  
Sugeng Triwahyono ◽  
Adam F. Lee ◽  
...  

Solid acid catalyzed cracking of waste oil-derived fatty acids is an attractive route to hydrocarbon fuels. HZSM-5 is an effective acid catalyst for fatty acid cracking; however, its microporous nature is susceptible to rapid deactivation by coking. We report the synthesis and application of hierarchical HZSM-5 (h-HZSM-5) in which silanization of pre-crystallized zeolite seeds is employed to introduce mesoporosity during the aggregation of growing crystallites. The resulting h-HZSM-5 comprises a disordered array of fused 10–20 nm crystallites and mesopores with a mean diameter of 13 nm, which maintain the high surface area and acidity of a conventional HZSM-5. Mesopores increase the yield of diesel range hydrocarbons obtained from oleic acid deoxygenation from ~20% to 65%, attributed to improved acid site accessibility within the hierarchical network.


2004 ◽  
Vol 94 (1/2) ◽  
pp. 45-47 ◽  
Author(s):  
Yuichi Kamiya ◽  
Shoko Sakata ◽  
Yusuke Yoshinaga ◽  
Ryuichiro Ohnishi ◽  
Toshio Okuhara

RSC Advances ◽  
2014 ◽  
Vol 4 (103) ◽  
pp. 59175-59184 ◽  
Author(s):  
Jianming Pan ◽  
Heping Gao ◽  
Yunlei Zhang ◽  
Jun Zeng ◽  
Weidong Shi ◽  
...  

This work addressed efficient one-pot conversion of cellulose to 5-hydroxymethylfurfural by porous solid acid in the presence of [Emim]Cl.


2021 ◽  
Vol 17 (1) ◽  
pp. 13-21
Author(s):  
Shofiyya Julaika ◽  
Agus Farid Fadli ◽  
Widiyastuti Widiyastuti ◽  
Heru Setyawan

Solid acid catalyst is a promising alternative to the counterpart homogeneous acid for esterification reaction from the viewpoint of reusability and environmental concerns. This work aims to develop sulfonated mesoporous silica-carbon composite as solid acid catalyst for the esterification. The catalyst was synthesized from sodium silicate as the silica precursor and polyethylene glycol (PEG) as both carbon precursor and template via a sol-gel route in an aqueous system. Then, it was carbonized to produce mesoporous silica-carbon composite. Using the proposed method, the surface area of the silica-carbon composite could reach as high as 1074.21 m2/g. Although the surface area decreased to 614.02 m²/g when it was functionalized with sulfonate groups, the composite had a high ionic capacity of 5.3 mEq/g and exhibited high catalytic activity for esterification reaction of acetic acid with ethanol. At a reaction temperature of 80 °C, the acetic acid conversion reached 76.55% in 4 h. In addition, the catalyst had good reusability, which can be comparable with the commercial catalyst Foltrol F-007. It appears that the sulfonated silica-carbon composite prepared from sodium silicate using PEG as the carbon source a promising candidate as catalyst for esterification and the related area. Copyright © 2021 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0). 


Sign in / Sign up

Export Citation Format

Share Document