The Pattern of Acetylation Defines the Priming Activity of Chitosan Tetramers

2020 ◽  
Vol 142 (4) ◽  
pp. 1975-1986 ◽  
Author(s):  
Sven Basa ◽  
Malathi Nampally ◽  
Talita Honorato ◽  
Subha N. Das ◽  
Appa R. Podile ◽  
...  
Keyword(s):  
2019 ◽  
Author(s):  
Sven Basa ◽  
Malathi Nampally ◽  
Talita Honorato ◽  
Subha Narayan Das ◽  
Appa Rao Podile ◽  
...  

The biological activity of chitosans depends on their degree of polymerization (DP) and degree of acetylation (DA). However, information could also be carried by the pattern of acetylation (PA): the sequence of <i>β</i>-1,4-linked glucosamine (deacetylated/D) and <i>N</i>-acetylglucosamine (acetylated/A) units. To address this hypothesis, we prepared partially-acetylated chitosan oligosaccharides from a chitosan polymer (DA=35%, DP<sub>w</sub>=905) using recombinant chitosan hydrolases with distinct substrate and cleavage specificities. The mixtures were separated into fractions DP4–DP12, which were tested for elicitor and priming activities in rice cells. We confirmed that both activities were influenced by DP, <a>but also observed apparent DA-dependent priming activity, with the ADDD+DADD fraction proving remarkably effective</a>. We then compared all four mono-acetylated tetramers prepared using different chitin deacetylases and observed significant differences in priming activity. This demonstrates for the first time that PA influences the biological activity of chitosans, which can now be recognized as <i>bona fide</i> information-carrying molecules


2019 ◽  
Author(s):  
Sven Basa ◽  
Malathi Nampally ◽  
Talita Honorato ◽  
Subha Narayan Das ◽  
Appa Rao Podile ◽  
...  

The biological activity of chitosans depends on their degree of polymerization (DP) and degree of acetylation (DA). However, information could also be carried by the pattern of acetylation (PA): the sequence of <i>β</i>-1,4-linked glucosamine (deacetylated/D) and <i>N</i>-acetylglucosamine (acetylated/A) units. To address this hypothesis, we prepared partially-acetylated chitosan oligosaccharides from a chitosan polymer (DA=35%, DP<sub>w</sub>=905) using recombinant chitosan hydrolases with distinct substrate and cleavage specificities. The mixtures were separated into fractions DP4–DP12, which were tested for elicitor and priming activities in rice cells. We confirmed that both activities were influenced by DP, <a>but also observed apparent DA-dependent priming activity, with the ADDD+DADD fraction proving remarkably effective</a>. We then compared all four mono-acetylated tetramers prepared using different chitin deacetylases and observed significant differences in priming activity. This demonstrates for the first time that PA influences the biological activity of chitosans, which can now be recognized as <i>bona fide</i> information-carrying molecules


1993 ◽  
Vol 178 (4) ◽  
pp. 1347-1355 ◽  
Author(s):  
M E Surette ◽  
R Palmantier ◽  
J Gosselin ◽  
P Borgeat

Stimulation of heparinized blood with 1 microM formyl-methionyl-leucyl-phenylalanine (FMLP) resulted in the formation of &lt; 30 pmol/ml plasma of 5-lipoxygenase (5-LO) products. The preincubation of blood with 1 microgram/ml of lipopolysaccharide (LPS) (Escherichia coli 0111-B4) for 30 min before stimulation with FMLP resulted in the accumulation of 250-300 pmol of 5-LO products per ml plasma. The major products detected were leukotriene B4 and (5S)-hydroxy-6,8,11,14-eicosatetraenoic acid which were produced in equivalent amounts. The priming activity was detectable with as little as 1-10 ng LPS per ml blood and was optimal using 1-10 micrograms LPS/ml blood. The priming for 5-LO product synthesis was optimal after 20-30 min of preincubation with LPS and declined at preincubation times &gt; 30 min. The priming effect of LPS was also observed using the complement fragment C5a or interleukin 8 as agonists. Polymorphonuclear leukocytes (PMN) and peripheral blood mononuclear cells accounted for 80 and 20% of the synthesis of 5-LO products, respectively. The ability of LPS to prime isolated PMN was dependent on the presence of plasma and was inhibited by the anti-CD14 antibody IOM2, indicating a CD14-dependent priming mechanism. The priming of whole blood with tumor necrosis factor alpha (TNF-alpha) and LPS was additive and the presence of mononuclear cells did not enhance the ability of LPS to prime PMN, indicating that the priming activity of LPS is independent of LPS-induced TNF-alpha synthesis. The mechanism by which LPS enhance 5-LO product synthesis in PMN was investigated. Treatment of PMN with LPS strongly enhanced the release of arachidonic acid after stimulation with FMLP. The release of arachidonic acid was optimal 2-3 min after stimulation with FMLP, attaining levels 5-15-fold greater than those observed in unprimed cells stimulated with FMLP. These results demonstrate that LPS dramatically increases the ability of blood to generate 5-LO products, and support the putative role of leukotrienes in pathological states involving LPS.


Transfusion ◽  
2018 ◽  
Vol 58 (8) ◽  
pp. 2003-2012 ◽  
Author(s):  
Michele M. Loi ◽  
Marguerite Kelher ◽  
Monika Dzieciatkowska ◽  
Kirk C. Hansen ◽  
Anirban Banerjee ◽  
...  

Author(s):  
V. D. Zhestyanikov ◽  
L. S. Barenfeld ◽  
T. V. Barskaya

10.5109/23727 ◽  
1981 ◽  
Vol 25 (4) ◽  
pp. 161-166
Author(s):  
Yoshifumi Tomita ◽  
Hiroaki Fujiki ◽  
Kazuki Shinohara ◽  
Hiroki Murakami ◽  
Hirohisa Omura

2021 ◽  
Vol 6 (59) ◽  
pp. eabc6998
Author(s):  
Chuanhui Han ◽  
Victoria Godfrey ◽  
Zhida Liu ◽  
Yanfei Han ◽  
Longchao Liu ◽  
...  

The inflammasome promotes inflammation-associated diseases, including cancer, and contributes to the radiation-induced tissue damage. However, the role of inflammasome in radiation-induced antitumor effects is unclear. We observed that tumors transplanted in Casp1−/− mice were resistant to radiation treatment compared with tumors in wild-type (WT) mice. To map out which molecule in the inflammasome pathway contributed to this resistant, we investigated the antitumor effect of radiation in several inflammasome-deficient mice. Tumors grown in either Aim2−/− or Nlrp3−/− mice remained sensitive to radiation, like WT mice, whereas Aim2−/−Nlrp3−/− mice showed radioresistance. Mechanistically, extracellular vesicles (EVs) and EV-free supernatant derived from irradiated tumors activated both Aim2 and Nlrp3 inflammasomes in macrophages, leading to the production of interleukin-1β (IL-1β). IL-1β treatment helped overcome the radioresistance of tumors growing in Casp1−/− and Aim2−/−Nlrp3−/− mice. IL-1 signaling in dendritic cells (DCs) promoted radiation-induced antitumor immunity by enhancing the cross-priming activity of DCs. Overall, we demonstrated that radiation-induced activation of the AIM2 and NLRP3 inflammasomes coordinate to induce some of the antitumor effects of radiation by triggering IL-1 signaling in DCs, leading to their activation and cross-priming.


2001 ◽  
Vol 125 (4) ◽  
pp. 523-526
Author(s):  
Susan E. Lenahan ◽  
Ronald E. Domen ◽  
Christopher C. Silliman ◽  
Charles P. Kingsley ◽  
Paula J. Romano

Abstract Transfusion-related acute lung injury is seen following the transfusion of blood components. The reported incidence is approximately 1 in 2000 transfusions. Clinically, it is similar to adult respiratory distress syndrome. The pathophysiology is unclear but has been attributed to HLA antibodies, granulocyte antibodies, and more recently to biologically active mediators in stored blood components. We report a case with laboratory evidence that supports the role of biologically active mediators in the pathogenesis of transfusion-related acute lung injury. To our knowledge, the case reported here is the first to use lipid extractions of patient samples to determine that lipid-priming activity was present at the time transfusion-related acute lung injury was identified clinically.


1990 ◽  
Vol 111 (6) ◽  
pp. 3077-3086 ◽  
Author(s):  
P J Mansfield ◽  
L A Boxer ◽  
S J Suchard

Polymorphonuclear leukocytes (PMNs) migrate to sites of inflammation or injury in response to chemoattractants released at those sites. The presence of extracellular matrix (ECM) proteins at these sites may influence PMN accumulation at blood vessel walls and enhance their ability to move through tissue. Thrombospondin (TSP), a 450-kD ECM protein whose major proteolytic fragments are a COOH-terminal 140-kD fragment and an NH2-terminal heparin-binding domain (HBD), is secreted by platelets, endothelial cells, and smooth muscle cells. TSP binds specifically to PMN surface receptors and has been shown, in other cell types, to promote directed movement. TSP in solution at low concentrations (30-50 nM) "primed" PMNs for f-Met-Leu-Phe (fMLP)-mediated chemotaxis, increasing the response two- to fourfold. A monoclonal antibody against the HBD of TSP totally abolished this priming effect suggesting that the priming activity resides in the HBD of TSP. Purified HBD retains the priming activity of TSP thereby corroborating the antibody data. TSP alone, in solution at high concentrations (0.5-3.0 microM), stimulated chemotaxis of PMNs and required both the HBD and the 140-kD fragment of TSP. In contrast to TSP in solution, TSP bound to nitrocellulose filters in the range of 20-70 pmol stimulated random locomotion of PMNs. The number of PMNs migrating in response to bound TSP was approximately two orders of magnitude greater than the number of cells that exhibited chemotaxis in response to soluble TSP or fMLP. Monoclonal antibody C6.7, which recognizes an epitope near the carboxyl terminus of TSP, blocked migration stimulated by bound TSP, suggesting that the activity resides in this domain. Using proteolytic fragments, we demonstrated that bound 140-kD fragment, but not HBD, promoted migration of PMNs. Therefore, TSP released at injury sites, alone or in synergy with chemotactic peptides like fMLP, could play a role in directing PMN movement.


Sign in / Sign up

Export Citation Format

Share Document