Modified Method Combining in Situ Detoxification with Simultaneous Saccharification and Cofermentation (SSCF) as a Single Step for Converting Exploded Rice Straw into Ethanol

2014 ◽  
Vol 62 (30) ◽  
pp. 7486-7495 ◽  
Author(s):  
Jian Zhang ◽  
Wen-xue Zhang ◽  
Ling You ◽  
Li-guo Yin ◽  
Yong-hua Du ◽  
...  
2019 ◽  
Vol 130 ◽  
pp. 259-266 ◽  
Author(s):  
Cleitiane da Costa Nogueira ◽  
Carlos Eduardo de Araújo Padilha ◽  
Anderson Alles de Jesus ◽  
Domingos Fabiano de Santana Souza ◽  
Cristiane Fernandes de Assis ◽  
...  

Energy ◽  
2017 ◽  
Vol 135 ◽  
pp. 32-39 ◽  
Author(s):  
Qiuzhuo Zhang ◽  
Huiqin Huang ◽  
Hui Han ◽  
Zhen Qiu ◽  
Varenyam Achal

2021 ◽  
Vol 10 (2) ◽  
pp. 319
Author(s):  
Hee Cheol Yang ◽  
Won Jong Rhee

Because cancers are heterogeneous, it is evident that multiplexed detection is required to achieve disease diagnosis with high accuracy and specificity. Extracellular vesicles (EVs) have been a subject of great interest as sources of novel biomarkers for cancer liquid biopsy. However, EVs are nano-sized particles that are difficult to handle; thus, it is necessary to develop a method that enables efficient and straightforward EV biomarker detection. In the present study, we developed a method for single step in situ detection of EV surface proteins and inner miRNAs simultaneously using a flow cytometer. CD63 antibody and molecular beacon-21 were investigated for multiplexed biomarker detection in normal and cancer EVs. A phospholipid-polymer-phospholipid conjugate was introduced to induce clustering of the EVs analyzed using nanoparticle tracking analysis, which enhanced the detection signals. As a result, the method could detect and distinguish cancer cell-derived EVs using a flow cytometer. Thus, single step in situ detection of multiple EV biomarkers using a flow cytometer can be applied as a simple, labor- and time-saving, non-invasive liquid biopsy for the diagnosis of various diseases, including cancer.


2016 ◽  
Vol 113 (28) ◽  
pp. 7722-7726 ◽  
Author(s):  
Gavin O. Jones ◽  
Alexander Yuen ◽  
Rudy J. Wojtecki ◽  
James L. Hedrick ◽  
Jeannette M. García

It is estimated that ∼2.7 million tons poly(carbonate)s (PCs) are produced annually worldwide. In 2008, retailers pulled products from store shelves after reports of bisphenol A (BPA) leaching from baby bottles, reusable drink bottles, and other retail products. Since PCs are not typically recycled, a need for the repurposing of the PC waste has arisen. We report the one-step synthesis of poly(aryl ether sulfone)s (PSUs) from the depolymerization of PCs and in situ polycondensation with bis(aryl fluorides) in the presence of carbonate salts. PSUs are high-performance engineering thermoplastics that are commonly used for reverse osmosis and water purification membranes, medical equipment, as well as high temperature applications. PSUs generated through this cascade approach were isolated in high purity and yield with the expected thermal properties and represent a procedure for direct conversion of one class of polymer to another in a single step. Computational investigations performed with density functional theory predict that the carbonate salt plays two important catalytic roles in this reaction: it decomposes the PCs by nucleophilic attack, and in the subsequent polyether formation process, it promotes the reaction of phenolate dimers formed in situ with the aryl fluorides present. We envision repurposing poly(BPA carbonate) for the production of value-added polymers.


2021 ◽  
Vol 22 ◽  
pp. 101388
Author(s):  
Shichao Liu ◽  
Zhonglei Xie ◽  
Yintao Zhu ◽  
Yanmiao Zhu ◽  
Yan Jiang ◽  
...  

Zygote ◽  
2013 ◽  
Vol 22 (3) ◽  
pp. 300-304
Author(s):  
Lifei Li ◽  
Xuehong Zhang ◽  
Weihua Wang

SummaryFluorescence in situ hybridization (FISH) is a cytogenetic technology used to detect chromosomal abnormalities in preimplantation human embryos. However, its efficiency is not stable due to improper sample preparation. The present study was designed to modify the current sample preparation technique and then to evaluate its efficiency in human preimplantation genetic diagnosis (PGD). Day 3 cleavage embryos as well as day 5 and 6 blastocysts were biopsied by mechanical aspiration method. In the present study, two methods were used for sample preparation of the biopsied cells. Method I was the traditional method, in which each blastomere was placed in a hypotonic solution for 5 min and then fixed on glass slides. The slides were kept at room temperature before the FISH procedures. Method II was a modified method, in which all blastomeres were placed individually in hypotonic solution drops covered by oil for at least 5 min and then fixed on slides with 0.1% Tween/HCl. After fixation, the slides were kept at –20°C for at least 30 min before the FISH procedures. The two methods were compared in terms of time consumption and proportions of blastomeres with FISH signals. In total, 329 blastomeres from day 3 embryos were fixed by Method I with an average fixation time of 8–10 min for each blastomere. By contrast, with Method II, 362 blastomeres were fixed and the average time was 3–4 min for each blastomere. After FISH, more nuclei had signals with Method II (97.2%) than with Method I (86.9%). All cells that were biopsied from blastocysts and prepared with Method II had FISH signals. However, Method I was not suitable for the fixation of multiple cells biopsied from blastocysts as cells were not traceable during the fixation. The present study indicates that proper sample preparation is critical for obtaining FISH signals in cells biopsied from preimplantation human embryos; hence these modifications can increase the efficiency of human PGD.


2018 ◽  
Vol 61 (6) ◽  
pp. 1775-1782
Author(s):  
Sun Min Kim ◽  
DoKyoung Lee ◽  
Santanu Thapa ◽  
Bruce S. Dien ◽  
Mike E. Tumbleson ◽  
...  

Abstract. To examine the chemical composition and ethanol production of feedstocks grown on marginal lands, prairie cordgrass and switchgrass from waterlogged land, saline land, and saline water irrigated land were evaluated. Samples were pretreated using 1% w w-1 dilute acid at 160°C for 10 min, and simultaneous saccharification and cofermentation was conducted using industrial engineered . Samples grown on land irrigated with saline water had 2.8-fold higher total ash content compared to the other types of land, resulting in lower carbohydrate concentrations. Yeast fermented glucose and xylose simultaneously; almost all of the sugars were consumed, indicating that salts present in biomass ash did not inhibit yeast performance. Ethanol production from the waterlogged and saline lands was 2,500 to 4,700 L ha-1, which is comparable to that of samples grown on other agricultural lands. Prairie cordgrass and switchgrass grown on marginal lands could be potential feedstocks for cellulosic biofuel. Keywords: Irrigation, Marginal land, Prairie cordgrass, Saline, Simultaneous saccharification and cofermentation, Switchgrass, Waterlogging.


Sign in / Sign up

Export Citation Format

Share Document