Hepatic Gene Expression Related to Lower Plasma Cholesterol in Hamsters Fed High-Fat Diets Supplemented with Blueberry Peels and Peel Extract†

2010 ◽  
Vol 58 (7) ◽  
pp. 3984-3991 ◽  
Author(s):  
Hyunsook Kim ◽  
Glenn E. Bartley ◽  
Agnes M. Rimando ◽  
Wallace Yokoyama

2008 ◽  
Vol 19 (8) ◽  
pp. 505-513 ◽  
Author(s):  
Anne M. Flanagan ◽  
Jackie L. Brown ◽  
Consuelo A. Santiago ◽  
Pauline Y. Aad ◽  
Leon J. Spicer ◽  
...  


2019 ◽  
Vol 20 (13) ◽  
pp. 3229 ◽  
Author(s):  
Moody ◽  
Wang ◽  
Jung ◽  
Chen ◽  
Pan

Calorie-dense high-fat diets (HF) are associated with detrimental health outcomes, including obesity, cardiovascular disease, and diabetes. Both pre- and post-natal HF diets have been hypothesized to negatively impact long-term metabolic health via epigenetic mechanisms. To understand how the timing of HF diet intake impacts DNA methylation and metabolism, male Sprague–Dawley rats were exposed to either maternal HF (MHF) or post-weaning HF diet (PHF). At post-natal week 12, PHF rats had similar body weights but greater hepatic lipid accumulation compared to the MHF rats. Genome-wide DNA methylation was evaluated, and analysis revealed 1744 differentially methylation regions (DMRs) between the groups with the majority of the DMR located outside of gene-coding regions. Within differentially methylated genes (DMGs), intragenic DNA methylation closer to the transcription start site was associated with lower gene expression, whereas DNA methylation further downstream was positively correlated with gene expression. The insulin and phosphatidylinositol (PI) signaling pathways were enriched with 25 DMRs that were associated with 20 DMGs, including PI3 kinase (Pi3k), pyruvate kinase (Pklr), and phosphodiesterase 3 (Pde3). Together, these results suggest that the timing of HF diet intake determines DNA methylation and gene expression patterns in hepatic metabolic pathways that target specific genomic contexts.



2020 ◽  
Vol 2 (1) ◽  
Author(s):  
Priscila L. S. Alves ◽  
Jose De J Berrios ◽  
James Pan ◽  
Wallace H. Yokoyama

Abstract Hypolipidemic and anti-obesity properties of extruded black, pinto and white beans were examined in male Syrian hamsters fed high fat diets for 3 weeks. The efficiency and effectiveness of extruder processing to eliminate heat-labile antinutrients were also determined. Hamsters fed a high fat diet containing 40% extruded black beans gained the same amount of weight as animals on a low-fat chow diet (based on AIN-93G). Total plasma cholesterol of the hamsters fed bean flour- based diets tended to be lower, ranging between 298 and 356 mg/dL, compared to 365 mg/dL for the control group and total and free liver cholesterol was about 50 and 33% lower, respectively, in the livers (freeze-dried) of hamsters fed the black turtle bean (BB) and pinto bean (PB) diets. The nitrogen content of the feces from hamsters fed the PB and white bean (WB) diets were 2.6x higher than the control and the excretion of deoxycholic acid (DCA) and lithocholic acid (LCA) was higher in all legume fed hamsters The results show that extrusion efficiently and economically reduces anti-nutritive factors that inhibit the digestion and absorption of proteins and carbohydrates. Graphical abstract



2018 ◽  
Vol 128 ◽  
pp. 67-73 ◽  
Author(s):  
Maria Fernanda Fernandes ◽  
Maria Cristina Tache ◽  
Shannon L. Klingel ◽  
Francesco Leri ◽  
David M. Mutch


2015 ◽  
Vol 39 (11) ◽  
pp. 1619-1629 ◽  
Author(s):  
E García-Ruiz ◽  
B Reynés ◽  
R Díaz-Rúa ◽  
E Ceresi ◽  
P Oliver ◽  
...  


PLoS ONE ◽  
2013 ◽  
Vol 8 (2) ◽  
pp. e55603 ◽  
Author(s):  
Mirjam Luijten ◽  
Amar V. Singh ◽  
Caleb A. Bastian ◽  
Anja Westerman ◽  
M. Michele Pisano ◽  
...  




Sign in / Sign up

Export Citation Format

Share Document