In Situ Studies on the Switching Behavior of Ultrathin Poly(acrylic acid) Polyelectrolyte Brushes in Different Aqueous Environments

Langmuir ◽  
2010 ◽  
Vol 26 (15) ◽  
pp. 12926-12932 ◽  
Author(s):  
Dennis Aulich ◽  
Olha Hoy ◽  
Igor Luzinov ◽  
Martin Brücher ◽  
Roland Hergenröder ◽  
...  
Molecules ◽  
2019 ◽  
Vol 24 (11) ◽  
pp. 2141 ◽  
Author(s):  
Martin Müller

The deposition and nanostructure of polyelectrolyte (PEL) multilayers (PEMs) of branched poly(ethyleneimine)/poly(acrylic acid) (PEI/PAA) onto silicon substrates was studied in terms of the dependence of pH and the PEL concentration (cPEL) in the individual adsorption steps z. Both a commercial automatic dipping device and a homebuilt automatic stream coating device (flow cell) were used. Gravimetry, SFM, transmission (TRANS) and in situ attenuated total reflection (ATR) FTIR spectroscopy were used for the quantitative determination of the adsorbed amount, thickness, chemical composition and morphology of deposited PEMs, respectively. Firstly, the combination of pH = 10 for PEI and pH = 4 for PAA, where both PEL were predominantly in the neutral state, resulted in an extraordinarily high PEM deposition, while pH combinations, where one PEL component was charged, resulted in a significantly lower PEM deposition. This was attributed to both PEL conformation effects and acid/base interactions between basic PEI and acidic PAA. Secondly, for that pH combination an exponential relationship between PEM thickness and adsorption step z was found. Thirdly, based on the results of three independent methods, the course of the deposited amount of a PEM-10 (z = 10) versus cPEL in the range 0.001 to 0.015 M at pH = 10/4 was non-monotonous showing a pronounced maximum at cPEL = 0.005 M. Analogously, for cPEL = 0.005 M a maximum of roughness and structure size was found. Fourthly, related to that finding, in situ ATR-FTIR measurements gave evidence for the release of outermost located PEI upon PAA immersion (even step) and of outermost PAA upon PEI immersion (odd step) under formation of PEL complexes in solution. These studies help us to prepare PEL-based films with a defined thickness and morphology for interaction with biofluids in the biomedical and food fields.


2017 ◽  
Vol 1 (2) ◽  
pp. 310-318 ◽  
Author(s):  
Jin Li ◽  
Zhilong Su ◽  
Xiaodong Ma ◽  
Hongjie Xu ◽  
Zixing Shi ◽  
...  

A novel type of supramolecular hydrogel was developed byin situpolymerization of acrylic acid (AA) and acrylamide (AM) monomers in the aqueous solution of chitosan (CS) based on the dynamic electrostatic interaction of ions.


2007 ◽  
Vol 2007 ◽  
pp. 1-12 ◽  
Author(s):  
Vitaliy Datsyuk ◽  
Laurent Billon ◽  
Christelle Guerret-Piécourt ◽  
Sylvie Dagréou ◽  
Nicolas Passade-Boupatt ◽  
...  

Carbon nanotube (CNT) polymer composites were synthesized via in situ nitroxide-mediated diblock copolymerization. Poly(acrylic acid) (PAA) was chosen as a first block to obtain a precomposite CNT-PAA which is readily dispersible in various solvents including water. The immobilization of the stable poly(acrylic acid) alkoxyamine functionality on the nanotube surface occurs during the synthesis of the first block without CNT prior treatment. The living character of this block is established by spectroscopic methods and the nature of the CNT/PAA interaction is discussed. This living first block offers the opportunity to reinitiate the polymerization of a second block that can be chosen among a wide range of monomers. This versatility is illustrated with a second block containing methyl acrylate (MA) or styrene (S). Scanning and transmission electron microscopies confirm good CNT dispersion in the polymer network, while transmission electron microscopy also spots the anchorage locations of PAA on the CNT surface. Such nanotubes wrapped by diblock copolymers can be dispersed in various polymer matrices to create CNT—polymer composites. Conductivity measurements show that these composites obey a percolation-like power law with a low percolation threshold (less than 0.5 vol%) and a high maximum conductivity (up to 1.5 S/cm at room temperature).


Sign in / Sign up

Export Citation Format

Share Document