scholarly journals Polymer Brush-Modified Magnetic Nanoparticles for His-Tagged Protein Purification

Langmuir ◽  
2011 ◽  
Vol 27 (6) ◽  
pp. 3106-3112 ◽  
Author(s):  
Fei Xu ◽  
James H. Geiger ◽  
Gregory L. Baker ◽  
Merlin L. Bruening
2016 ◽  
Vol 40 (4) ◽  
pp. 3194-3207 ◽  
Author(s):  
Ya-Ya Song ◽  
Xiao-Dong Song ◽  
Heng Yuan ◽  
Chang-Jing Cheng

A novel type of multifunctional magnetic nanoparticle with highly chiral recognition capability, excellent thermo-sensitive adsorption and decomplexation properties toward amino acid enantiomers, and recyclability was developed in this study.


2021 ◽  
Vol 22 (12) ◽  
pp. 6571
Author(s):  
Yu-Chen Liu ◽  
Katragunta Kumar ◽  
Cheng-Hsiu Wu ◽  
Kai-Chih Chang ◽  
Cheng-Kang Chiang ◽  
...  

A nucleic acid aptamer that specifically recognizes methicillin-resistant Staphylococcus aureus (MRSA) has been immobilized on magnetic nanoparticles to capture the target bacteria prior to mass spectrometry analysis. After the MRSA species were captured, they were further eluted from the nanoparticles and identified using matrix-assisted laser desorption ionization mass spectrometry (MALDI-MS). The combination of aptamer-based capture/enrichment and MS analysis of microorganisms took advantage of the selectivity of both techniques and should enhance the accuracy of MRSA identification. The capture and elution efficiencies for MRSA were optimized by examining factors such as incubation time, temperature, and elution solvents. The aptamer-modified magnetic nanoparticles showed a capture rate of more than 90% under the optimized condition, whereas the capture rates were less than 11% for non-target bacteria. The as-prepared nanoparticles exhibited only a 5% decrease in the capture rate and a 9% decrease in the elution rate after 10 successive cycles of utilization. Most importantly, the aptamer-modified nanoparticles revealed an excellent selectivity towards MRSA in bacterial mixtures. The capture of MRSA at a concentration of 102 CFU/mL remained at a good percentage of 82% even when the other two species were at 104 times higher concentration (106 CFU/mL). Further, the eluted MRSA bacteria were successfully identified using MALDI mass spectrometry.


2017 ◽  
Vol 221 ◽  
pp. 1442-1450 ◽  
Author(s):  
Gulay Bayramoglu ◽  
Tugce Doz ◽  
V. Cengiz Ozalp ◽  
M. Yakup Arica

Sign in / Sign up

Export Citation Format

Share Document