Temperature-Dependent Infrared and Calorimetric Studies on Arsenicals Adsorption from Solution to Hematite Nanoparticles

Langmuir ◽  
2015 ◽  
Vol 31 (9) ◽  
pp. 2749-2760 ◽  
Author(s):  
Md Abdus Sabur ◽  
Sabine Goldberg ◽  
Adrian Gale ◽  
Nadine Kabengi ◽  
Hind A. Al-Abadleh
2019 ◽  
Vol 16 ◽  
Author(s):  
Ihab M. Obaidat ◽  
Sulaiman Alaabed ◽  
Imad A. Al-Omari ◽  
Venkatesha Narayanaswamy ◽  
Bashar Issa ◽  
...  

Background: In nano-size α-Fe2O3 particles, Morin transition temperature was reported to be suppressed. This suppression of the TM in nano-size α-Fe2O3 was suggested to be due to high internal strain and to the enhanced role of surface spins because of the enhanced surface to volume ratio. It was reported that for nanoparticles of diameters less than 20 nm, no Morin transition was observed and the antiferromagnetic phase disappears. In addition, annealing of samples was reported to result in both an increase of TM and a sharper transition which were attributed to reduction in de¬fects, crystal growth, or both. Objective: In this work we investigated the role of applied magnetic field on TM, the extent of the Morin transition, thermal hysteresis, and the spin-flop field in synthetic α-Fe2O3 nanoparticles of diameter around 20 nm. Methods: Hematite nanoparticles were synthesized using sol-gel method. Morphology and structural studies of the particles were done using TEM, and XRD, respectively. The XRD patterns confirm that the particles are hematite with a very small maghemite phase. The average size of the nanoparticles is estimated from both TEM images and XRD patterns to be around 20 nm. The magnetization versus temperature measurements were conducted upon heating from 5 K to 400 K and cooling down back to 5 K at several applied fields between 50 Oe and 500 Oe. Magnetization versus magnetic field measurements between -5 T and +5 T were conducted at several temperatures in the temperature range of 2-300 K. Results: We report three significant findings in these hematite nanoparticles. First, we report the occurrence of Morin transition in hematite nanoparticles of such size. Second, we report the slight field dependence of Morin transition temperature. Third, we report the strong temperature dependence of the spin-flop. Zero-field-cooled magnetization versus temperature measurements were conducted at several applied magnetic fields. Conclusion: From the magnetization versus temperature curves, Morin transition was observed to occur at all applied fields at Morin transition temperature, TM which is around 250 K with slight field dependence. From the magnetization versus magnetic field curves, spin-flop in the antiferromagnetic state was observed and found to be strongly temperature dependent. The results are discussed in terms of three components of magnetic phase in our sample. These are, the paramagnetic, soft ferromagnetic, and hard ferromagnetic components.


Author(s):  
T.E. Pratt ◽  
R.W. Vook

(111) oriented thin monocrystalline Ni films have been prepared by vacuum evaporation and examined by transmission electron microscopy and electron diffraction. In high vacuum, at room temperature, a layer of NaCl was first evaporated onto a freshly air-cleaved muscovite substrate clamped to a copper block with attached heater and thermocouple. Then, at various substrate temperatures, with other parameters held within a narrow range, Ni was evaporated from a tungsten filament. It had been shown previously that similar procedures would yield monocrystalline films of CU, Ag, and Au.For the films examined with respect to temperature dependent effects, typical deposition parameters were: Ni film thickness, 500-800 A; Ni deposition rate, 10 A/sec.; residual pressure, 10-6 torr; NaCl film thickness, 250 A; and NaCl deposition rate, 10 A/sec. Some additional evaporations involved higher deposition rates and lower film thicknesses.Monocrystalline films were obtained with substrate temperatures above 500° C. Below 450° C, the films were polycrystalline with a strong (111) preferred orientation.


1990 ◽  
Vol 64 (03) ◽  
pp. 402-406 ◽  
Author(s):  
M D Oethinger ◽  
E Seifried

SummaryThe present in vitro study investigated dose-, time- and temperature-dependent effects of two-chain urokinase plasminogen activato(u-PA, urokinase) on normal citrated plasma. When 10 μg/ml u-PA wereadded to pooled normal plasma and incubated for 30 min at an ambient temperature (25° C), α2-antiplas-min decreased to 8% of the control value. Incubation on ice yielded a decrease to 45% of control,whereas α2-antiplasmin was fully consumed at 37° C. Fibrinogen and plasminogen fell to 46% and 39%, respectively, after a 30 min incubation at 25° C. Thrombin time prolonged to 190% of control.Various inhibitors were studied with respect to their suitability and efficacy to prevent these in vitro effects. Aprotinin exhibited a good protective effect on fibrinogen at concentrations exceeding 500 KlU/ml plasma. Its use, however, was limited due to interferences with some haemostatic assays. We could demonstrate that L-Glutamyl-L-Glycyl-L-Arginyl chloromethyl ketone (GGACK) and a specific polyclonal anti-u-PA-antibody (anti-u-PA-IgG) effectively inhibited urokinase-induced plasmin generation without interfering with haemostatic assays. The anti-u-PA-antibody afforded full protection ofα2-antiplasmin at therapeutic levels of u-PA.It is concluded that u-PA in plasma samples from patients during thrombolytic therapy may induce in vitro effects which should be prevented by the use of a suitable inhibitor such as GGACK or specific anti-u-PA-antibody.


1996 ◽  
Vol 75 (03) ◽  
pp. 515-519 ◽  
Author(s):  
Mark J Post ◽  
Anke N de Graaf-Bos ◽  
George Posthuma ◽  
Philip G de Groot ◽  
Jan J Sixma ◽  
...  

Summary Purpose. Thermal angioplasty alters the thrombogenicity of the arterial wall. In previous studies, platelet adhesion was found to increase after heating human subendothelium to 55° C and decrease after heating to 90° C. In the present electron microscopic study, the mechanism of this temperature-dependent platelet adhesion to the heated arterial wall is elucidated by investigating temperature-dependent conformational changes of von Willebrand factor (vWF) and collagen types I and III and the binding of vWF to heated collagen. Methods. Purified vWF and/or collagen was applied to electron microscopic grids and heated by floating on a salt-solution of 37° C, 55° C or 90° C for 15 s. After incubation with a polyclonal antibody against vWF and incubation with protein A/gold, the grids were examined by electron microscopy. Results. At 37° C, vWF was coiled. At 55° C, vWF unfolded, whereas heating at 90° C caused a reduction in antigenicity. Collagen fibers heated to 37° C were 60.3 ± 3.1 nm wide. Heating to 55° C resulted in the unwinding of the fibers, increasing the width to 87.5 ± 8.2 nm (p < 0.01). Heating to 90° C resulted in denatured fibers with an enlarged width of 85.1 ± 6.1 nm (p < 0.05). Heating of collagen to 55° C resulted in an increased vWF binding as compared to collagen heated to 37° C or to 90° C. Incubation of collagen with vWF, prior to heating, resulted in a vWF binding after heating to 55° C that was similar to the 37° C binding and a decreased binding after 90° C. Conclusions. After 55° C heating, the von Willebrand factor molecule unfolds and collagen types I and III exhibit an increased adhesiveness for von Willebrand factor. Heating to 90° C denatures von Willebrand factor and collagen. The conformation changes of von Willebrand factor and its altered binding to collagen type I and III may explain the increased and decreased platelet adhesion to subendothelium after 55° C and 90° C heating, respectively.


1975 ◽  
Vol 34 (03) ◽  
pp. 780-794 ◽  
Author(s):  
Dianne M Kenney ◽  
Francis C Chao ◽  
James L Tullis ◽  
Gail S Conneely

SummaryThe uptake and binding of antimitotic alkaloid colchicine has been demonstrated in washed preparations of human platelets. A silicone oil technique was adapted so that both uptake and binding of 14C-colchicine were examined in the same platelet preparations. The time dependence and amount of colchicine taken up and bound by different platelet preparations during a 90 to 120 min incubation period were highly reproducible. Both colchicine uptake and binding by intact platelets, and colchicine binding by preparations of lysed platelets were specific and temperature dependent. Colchicine uptake was slowly reversible. Magnesium and GTP enhanced colchicine binding by lysed platelet preparations but calcium decreased binding.Exposure of platelets to either cold (4° C) or to thrombin, which disrupt platelet microtubules, produced significant increases in colchicine uptake and binding. The thrombin effect was maximal at 37° C and resulted in a greater increase in uptake and binding than that produced by either cold treatment alone or, by cold treatment followed by incubation with thrombin at 37° C. The amount of increase in uptake and binding produced by thrombin was independent of both thrombin (1–5 Units/109 platelets) and colchicine concentrations (1–50 × 10−6M).It is postulated that thrombin may initiate the formation, or make available, colchicine binding sites (microtubule subunits) within platelets.


Sign in / Sign up

Export Citation Format

Share Document