HfOx-Based Vertical Resistive Switching Random Access Memory Suitable for Bit-Cost-Effective Three-Dimensional Cross-Point Architecture

ACS Nano ◽  
2013 ◽  
Vol 7 (3) ◽  
pp. 2320-2325 ◽  
Author(s):  
Shimeng Yu ◽  
Hong-Yu Chen ◽  
Bin Gao ◽  
Jinfeng Kang ◽  
H.-S. Philip Wong
Micromachines ◽  
2020 ◽  
Vol 11 (2) ◽  
pp. 228
Author(s):  
Hyeonjeong Kim ◽  
Songyi Yoo ◽  
In-Man Kang ◽  
Seongjae Cho ◽  
Wookyung Sun ◽  
...  

Recently, one-transistor dynamic random-access memory (1T-DRAM) cells having a polysilicon body (poly-Si 1T-DRAM) have attracted attention as candidates to replace conventional one-transistor one-capacitor dynamic random-access memory (1T-1C DRAM). Poly-Si 1T-DRAM enables the cost-effective implementation of a silicon-on-insulator (SOI) structure and a three-dimensional (3D) stacked architecture for increasing integration density. However, studies on the transient characteristics of poly-Si 1T-DRAM are still lacking. In this paper, with TCAD simulation, we examine the differences between the memory mechanisms in poly-Si and silicon body 1T-DRAM. A silicon 1T-DRAM cell’s data state is determined by the number of holes stored in a floating body (FB), while a poly-Si 1T-DRAM cell’s state depends on the number of electrons trapped in its grain boundary (GB). This means that a poly-Si 1T-DRAM can perform memory operations by using GB as a storage region in thin body devices with a small FB area.


2017 ◽  
Vol 17 (1) ◽  
pp. 273-278 ◽  
Author(s):  
Min-Hwi Kim ◽  
Sungjun Kim ◽  
Kyung-Chang Ryoo ◽  
Seongjae Cho ◽  
Byung-Gook Park

2008 ◽  
Vol 93 (22) ◽  
pp. 223505 ◽  
Author(s):  
Jung Won Seo ◽  
Jae-Woo Park ◽  
Keong Su Lim ◽  
Ji-Hwan Yang ◽  
Sang Jung Kang

2011 ◽  
Vol 1292 ◽  
Author(s):  
Jung Won Seo ◽  
Seung Jae Baik ◽  
Sang Jung Kang ◽  
Koeng Su Lim

ABSTRACTThis report covers the resistive switching characteristics of cross-bar type semi-transparent (or see-through) resistive random access memory (RRAM) devices based on ZnO. In order to evaluate the transmittance of the devices, we designed the memory array with various electrode sizes and spaces between the electrodes. To prevent read disturbance problems due to sneak currents, we employed a metal oxide based p-NiO/n-ZnO diode structure, which exhibited good rectifying characteristics and high forward current density. Based on these results, we found that the combined metal oxide diode/RRAM device could be promising candidate with suppressed read disturbances of cross-bar type ZnO RRAM device.


2008 ◽  
Vol 1072 ◽  
Author(s):  
Jianming Li ◽  
L.P. Shi ◽  
H.X. Yang ◽  
K.G. Lim ◽  
X.S. Miao ◽  
...  

ABSTRACTThree-dimensional finite element method (FEM) is used to solve the thermal strain-stress fields of phase-change random access memory (PCRAM) cells. Simulation results show that thermal stress concentrates at the interfaces between electrodes and phase change layer and it is significantly larger than that within the phase change layer. It has been found that the peak thermal stress is linearly related to the voltage of electrical pulse in the reset process but once amorphous state is produced in the cell, a nonlinear relationship between thermal stress and electrical power exists. This paper reported the change of thermal stress during set process. It was found that the stress decreases significantly due to the amorphous active region during set processes.


Sign in / Sign up

Export Citation Format

Share Document