Proteomic Analysis of MCF-7 Cell Lines Expressing the Zinc-Finger or the Proline-Rich Domain of Retinoblastoma-Interacting-Zinc-Finger Protein

2006 ◽  
Vol 5 (5) ◽  
pp. 1176-1185 ◽  
Author(s):  
Angela Chambery ◽  
Annarita Farina ◽  
Antimo Di Maro ◽  
Mariangela Rossi ◽  
Ciro Abbondanza ◽  
...  
1998 ◽  
Vol 124 (6) ◽  
pp. 1220-1228 ◽  
Author(s):  
E. Taguchi ◽  
H. Muramatsu ◽  
Q.-W. Fan ◽  
N. Kurosawa ◽  
G. Sobue ◽  
...  

2014 ◽  
Vol 2014 ◽  
pp. 1-14 ◽  
Author(s):  
Kai-Erik Uleberg ◽  
Irene Tveiterås Øvestad ◽  
Ane Cecilie Munk ◽  
Cato Brede ◽  
Bianca van Diermen ◽  
...  

Regression of cervical intraepithelial neoplasia (CIN) 2-3 to CIN 1 or less is associated with immune response as demonstrated by immunohistochemistry in formaldehyde-fixed paraffin-embedded (FFPE) biopsies. Proteomic analysis of water-soluble proteins in supernatants of biopsy samples with LC-MS (LTQ-Orbitrap) was used to identify proteins predictive of CIN2-3 lesions regression. CIN2-3 in the biopsies and persistence (CIN2-3) or regression (≤CIN1) in follow-up cone biopsies was validated histologically by two experienced pathologists. In a learning set of 20 CIN2-3 (10 regressions and 10 persistence cases), supernatants were depleted of seven high abundance proteins prior to unidimensional LC-MS/MS protein analysis. Mean protein concentration was 0.81 mg/mL (range: 0.55–1.14). Multivariate statistical methods were used to identify proteins that were able to discriminate between regressive and persistent CIN2-3. The findings were validated in an independent test set of 20 CIN2-3 (10 regressions and 10 persistence cases). Multistep identification criteria identified 165 proteins. In the learning set, zinc finger protein 441 and phospholipase D6 independently discriminated between regressive and persistent CIN2-3 lesions and correctly classified all 20 patients. Nine regression and all persistence cases were correctly classified in the validation set. Zinc finger protein 441 and phospholipase D6 in supernatant samples detected by LTQ-Orbitrap can predict regression of CIN2-3.


2005 ◽  
Vol 10 (4) ◽  
pp. 304-313 ◽  
Author(s):  
Pei-Qi Liu ◽  
Siyuan Tan ◽  
Matthew C. Mendel ◽  
Richard J. Murrills ◽  
Bheem M. Bhat ◽  
...  

Isogenic cell lines differing only in the expression of the protein of interest provide the ideal platform for cell-based screening. However, related natural lines differentially expressing the therapeutic target of choice are rare. Here the authors report a strategy for drug screening employing isogenic human cell lines in which the expression of the target protein is regulated by a gene-specific engineered zinc-finger protein (ZFP) transcription factor (TF). To demonstrate this approach, a ZFP TF activator of the human parathyroid hormone receptor 1 (PTHR1) gene was identified and introduced into HEK293 cells (negative for PTHR1). Following induction of ZFP TF expression, this cell line produced functional PTHR1 protein, resulting in a robust and ligand-specific cyclic adenosine monophosphate (cAMP) response. Reciprocally, the natural expression of PTHR1 observed in SAOS2 cells was dramatically reduced by the introduction of the appropriate PTHR1-specific ZFP TF repressor. Moreover, this ZFP-driven PTHR1 repression selectively eliminated the functional cAMP response invoked by known ligands of PTHR1. These data establish ZFP TF–generated isogenic lines as a general approach for the identification of therapeutic agents specific for the target gene of interest.


1993 ◽  
Vol 13 (3) ◽  
pp. 1759-1768 ◽  
Author(s):  
C B Gilks ◽  
S E Bear ◽  
H L Grimes ◽  
P N Tsichlis

During progression of Moloney murine leukemia virus (Mo-MuLV)-induced rat T cell lymphomas, growth selection results in the expansion of cell clones carrying increasing numbers of integrated proviruses. These new provirus insertions reproducibly contribute to enhanced growth, allowing the emergence of cell clones from the initially heterogeneous population of tumor cells. The Mo-MuLV-induced rat T cell lymphoma lines 2780d and 5675d, which are dependent on interleukin-2 (IL-2) for growth in culture (IL-2d), were placed in IL-2-free medium to select for IL-2-independent (IL-2i) mutants. Southern blot analysis of genomic DNA from these mutants, which was hybridized to a Mo-MuLV long terminal repeat probe, revealed that all mutants carried new provirus insertions (from one to four new proviruses per cell line). A locus of integration identified through cloning of the single new provirus detected in one of the IL-2i mutants, 2780i.5, was found to be the target of provirus insertion in 1 additional IL-2i cell line of 24 tested. A full-length cDNA of a gene (growth factor independence-1 [Gfi-1]) activated by promoter insertion in the 2780i.5 cells was cloned and shown to encode a novel zinc finger protein. Gfi-1 is expressed at low levels in IL-2d cell lines cultured in IL-2-containing medium and at high levels in most IL-2i cell lines, including the two harboring a provirus at this locus. Gfi-1 expression in adult animals is restricted to the thymus, spleen, and testis. In mitogen-stimulated splenocytes, Gfi-1 expression begins to rise at 12 h after stimulation and reaches very high levels after 50 h, suggesting that it may be functionally involved in events occurring after the interaction of IL-2 with its receptor, perhaps during the transition from the G1 to the S phase of the cell cycle. In agreement with this, Gfi-1 does not induce the expression of IL-2. Expression of Gfi-1 in 2780d cells following transfer of a Gfi-1/LXSN retrovirus construct contributes to the emergence of the IL-2i phenotype.


Biomolecules ◽  
2019 ◽  
Vol 9 (7) ◽  
pp. 263
Author(s):  
Timpika Chaiprasert ◽  
Napat Armartmuntree ◽  
Anchalee Techasen ◽  
Chadamas Sakonsinsiri ◽  
Somchai Pinlaor ◽  
...  

Zinc finger protein 423 (ZNF423) is a transcriptional factor involved in the development and progression of cancers but has not yet been examined in cholangiocarcinoma (CCA), an oxidative stress-driven cancer of biliary epithelium. In this study, we hypothesized that oxidative stress mediated ZNF423 expression regulates its downstream genes resulting in CCA genesis. ZNF423 protein expression patterns and 8-oxodG (an oxidative stress marker) formation in CCA tissues were investigated using immunohistochemical analysis. The results showed that ZNF423 was overexpressed in CCA cells compared to normal bile duct cells adjacent of the tumor. Notably, ZNF423 expression was positively correlated with 8-oxodG formation. Moreover, ZNF423 expression in an immortalized cholangiocyte cell line (MMNK1) was increased by hydrogen peroxide-treatment, suggesting that oxidative stress induces ZNF423 expression. To investigate the roles of ZNF423 in CCA progression, ZNF423 mRNA was silenced using specific siRNA in CCA cell lines, KKU-100 and KKU-213. Silencing of ZNF423 significantly inhibits cell proliferation and invasion of both CCA cell lines. Taking all these results together, the present study denoted that ZNF423 is an oxidative stress-responsive gene with an oncogenic property contributing to the regulation of CCA genesis.


Cell ◽  
1988 ◽  
Vol 54 (6) ◽  
pp. 831-840 ◽  
Author(s):  
Kazuhiro Morishita ◽  
Diana S. Parker ◽  
Michael L. Mucenski ◽  
Nancy A. Jenkins ◽  
Neal G. Copeland ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document