Measurement of the Total Range and Specific Energy Deposition of a Beam of Uranium Ions in Porous Carbon Targets

Atomic Energy ◽  
2004 ◽  
Vol 96 (4) ◽  
pp. 275-281 ◽  
Author(s):  
V. V. Vatulin ◽  
A. V. Kunin ◽  
A. A. Golubev ◽  
V. E. Luk'yashin ◽  
V. I. Turtikov ◽  
...  
2008 ◽  
Vol 396-398 ◽  
pp. 721-724 ◽  
Author(s):  
B.M. Mendes ◽  
T.P.R. Campos

Neutron brachytherapy show better results than conventional photon therapy for radioresistant tumors with hypoxic regions. Herein a comparative radiodosimetric analysis is presented considering 125I photon emitter seeds, often applied to brachytherapy, and a proposed Sol-Gel glass, synthesized with incorporated 252Cf neutron emitter, on a brain tumor implant. The proposition is to verify the viability of applying this bioceramic material. The methodology is based on the investigation of the specific energy deposition (dose) from 252Cf-Glass in deep brain interstitial implants through a stochastic computer code (MCNP5) and comparison with 125I seed’s energy deposition. 252Cf-Glass show dose per transition values higher than 125I seed’s set. RBE-isodose curves show a faster decrease of dose with the source distance increasing which can improve healthy tissue sparing.


2019 ◽  
Vol 59 (1) ◽  
pp. 29-62 ◽  
Author(s):  
Werner Hofmann ◽  
Wei Bo Li ◽  
Werner Friedland ◽  
Brian W. Miller ◽  
Balázs Madas ◽  
...  

AbstractAt the tissue level, energy deposition in cells is determined by the microdistribution of alpha-emitting radionuclides in relation to sensitive target cells. Furthermore, the highly localized energy deposition of alpha particle tracks and the limited range of alpha particles in tissue produce a highly inhomogeneous energy deposition in traversed cell nuclei. Thus, energy deposition in cell nuclei in a given tissue is characterized by the probability of alpha particle hits and, in the case of a hit, by the energy deposited there. In classical microdosimetry, the randomness of energy deposition in cellular sites is described by a stochastic quantity, the specific energy, which approximates the macroscopic dose for a sufficiently large number of energy deposition events. Typical examples of the alpha-emitting radionuclides in internal microdosimetry are radon progeny and plutonium in the lungs, plutonium and americium in bones, and radium in targeted radionuclide therapy. Several microdosimetric approaches have been proposed to relate specific energy distributions to radiobiological effects, such as hit-related concepts, LET and track length-based models, effect-specific interpretations of specific energy distributions, such as the dual radiation action theory or the hit-size effectiveness function, and finally track structure models. Since microdosimetry characterizes only the initial step of energy deposition, microdosimetric concepts are most successful in exposure situations where biological effects are dominated by energy deposition, but not by subsequently operating biological mechanisms. Indeed, the simulation of the combined action of physical and biological factors may eventually require the application of track structure models at the nanometer scale.


2020 ◽  
Vol 29 (12) ◽  
pp. 125006
Author(s):  
Yifei Zhu ◽  
Svetlana M Starikovskaia ◽  
Natalia Yu Babaeva ◽  
Mark J Kushner

Nanomaterials ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 1056
Author(s):  
Ndeye F. Sylla ◽  
Samba Sarr ◽  
Ndeye M. Ndiaye ◽  
Bridget K. Mutuma ◽  
Astou Seck ◽  
...  

Biomass-waste activated carbon/molybdenum oxide/molybdenum carbide ternary composites are prepared using a facile in-situ pyrolysis process in argon ambient with varying mass ratios of ammonium molybdate tetrahydrate to porous peanut shell activated carbon (PAC). The formation of MoO2 and Mo2C nanostructures embedded in the porous carbon framework is confirmed by extensive structural characterization and elemental mapping analysis. The best composite when used as electrodes in a symmetric supercapacitor (PAC/MoO2/Mo2C-1//PAC/MoO2/Mo2C-1) exhibited a good cell capacitance of 115 F g−1 with an associated high specific energy of 51.8 W h kg−1, as well as a specific power of 0.9 kW kg−1 at a cell voltage of 1.8 V at 1 A g−1. Increasing the specific current to 20 A g−1 still showcased a device capable of delivering up to 30 W h kg−1 specific energy and 18 kW kg−1 of specific power. Additionally, with a great cycling stability, a 99.8% coulombic efficiency and capacitance retention of ~83% were recorded for over 25,000 galvanostatic charge-discharge cycles at 10 A g−1. The voltage holding test after a 160 h floating time resulted in increase of the specific capacitance from 74.7 to 90 F g−1 at 10 A g−1 for this storage device. The remarkable electrochemical performance is based on the synergistic effect of metal oxide/metal carbide (MoO2/Mo2C) with the interconnected porous carbon. The PAC/MoO2/Mo2C ternary composites highlight promising Mo-based electrode materials suitable for high-performance energy storage. Explicitly, this work also demonstrates a simple and sustainable approach to enhance the electrochemical performance of porous carbon materials.


2014 ◽  
Vol 2 (21) ◽  
pp. 7997-8002 ◽  
Author(s):  
Shuang Wang ◽  
Ben Hsia ◽  
Carlo Carraro ◽  
Roya Maboudian

An all solid-state micro-supercapacitor is fabricated using patterned photoresist-derived porous carbon electrodes and an ionogel electrolyte. Excellent long-term stability and high specific energy are obtained.


Sign in / Sign up

Export Citation Format

Share Document