scholarly journals Enhanced Electrochemical Behavior of Peanut-Shell Activated Carbon/Molybdenum Oxide/Molybdenum Carbide Ternary Composites

Nanomaterials ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 1056
Author(s):  
Ndeye F. Sylla ◽  
Samba Sarr ◽  
Ndeye M. Ndiaye ◽  
Bridget K. Mutuma ◽  
Astou Seck ◽  
...  

Biomass-waste activated carbon/molybdenum oxide/molybdenum carbide ternary composites are prepared using a facile in-situ pyrolysis process in argon ambient with varying mass ratios of ammonium molybdate tetrahydrate to porous peanut shell activated carbon (PAC). The formation of MoO2 and Mo2C nanostructures embedded in the porous carbon framework is confirmed by extensive structural characterization and elemental mapping analysis. The best composite when used as electrodes in a symmetric supercapacitor (PAC/MoO2/Mo2C-1//PAC/MoO2/Mo2C-1) exhibited a good cell capacitance of 115 F g−1 with an associated high specific energy of 51.8 W h kg−1, as well as a specific power of 0.9 kW kg−1 at a cell voltage of 1.8 V at 1 A g−1. Increasing the specific current to 20 A g−1 still showcased a device capable of delivering up to 30 W h kg−1 specific energy and 18 kW kg−1 of specific power. Additionally, with a great cycling stability, a 99.8% coulombic efficiency and capacitance retention of ~83% were recorded for over 25,000 galvanostatic charge-discharge cycles at 10 A g−1. The voltage holding test after a 160 h floating time resulted in increase of the specific capacitance from 74.7 to 90 F g−1 at 10 A g−1 for this storage device. The remarkable electrochemical performance is based on the synergistic effect of metal oxide/metal carbide (MoO2/Mo2C) with the interconnected porous carbon. The PAC/MoO2/Mo2C ternary composites highlight promising Mo-based electrode materials suitable for high-performance energy storage. Explicitly, this work also demonstrates a simple and sustainable approach to enhance the electrochemical performance of porous carbon materials.

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
N. F. Sylla ◽  
N. M. Ndiaye ◽  
B. D. Ngom ◽  
D. Momodu ◽  
M. J. Madito ◽  
...  

Abstract In this study, the synthesis of porous activated carbon nanostructures from peanut (Arachis hypogea) shell waste (PSW) was described using different porosity enhancing agents (PEA) at various mass concentrations via a two-step process. The textural properties obtained were depicted with relatively high specific surface area values of 1457 m2 g−1, 1625 m2 g−1 and 2547 m2 g−1 for KHCO3, K2CO3 and KOH respectively at a mass concentration of 1 to 4 which were complemented by the presence of a blend of micropores, mesopores and macropores. The structural analyses confirmed the successful transformation of the carbon-containing waste into an amorphous and disordered carbonaceous material. The electrochemical performance of the material electrodes was tested in a 2.5 M KNO3 aqueous electrolyte depicted its ability to operate reversibly in both negative and positive potential ranges of 0.90 V. The activated carbon obtained from the carbonized CPSW:PEA with a mass ratio of 1:4 yielded the best electrode performance for all featured PEAs. The porous carbons obtained using KOH activation displayed a higher specific capacitance and the lower equivalent series resistance as compared to others. The remarkable performance further corroborated the findings linked to the textural and structural properties of the material. The assembled device operated in a neutral electrolyte (2.5 M KNO3) at a cell potential of 1.80 V, yielded a ca. 224.3 F g−1 specific capacitance at a specific current of 1 A g−1 with a corresponding specific energy of 25.2 Wh kg−1 and 0.9 kW kg−1 of specific power. This device energy was retained at 17.7 Wh kg−1 when the specific current was quadrupled signifying an excellent supercapacitive retention with a corresponding specific power of 3.6 kW kg−1. These results suggested that peanut shell waste derived activated carbons are promising candidates for high-performance supercapacitors.


Nanoscale ◽  
2021 ◽  
Author(s):  
Hang Zhang ◽  
Xuemin Wang ◽  
Zhengzheng Li ◽  
Cui Zhang ◽  
Shuangxi Liu

Transition-metal selenides are capturing eminence as promising electrode materials for energy storage applications owing to their low electronegativity and environment-friendly compared with metal sulfides/oxides. Herein, a CuCoSe@NC nanocomposite with copper-cobalt...


2020 ◽  
Vol 1000 ◽  
pp. 50-57
Author(s):  
Jagad Paduraksa ◽  
Muhammad Luthfi ◽  
Ariono Verdianto ◽  
Achmad Subhan ◽  
Wahyu Bambang Widayatno ◽  
...  

Lithium-Ion Capacitor (LIC) has shown promising performance to meet the needs of high energy and power-density-energy storage system in the era of electric vehicles nowadays. The development of electrode materials and electrolytes in recent years has improvised LIC performance significantly. One of the active materials of LIC electrodes, activated carbon (AC), can be synthesized from various biomass, one of which is the water hyacinth. Its abundant availability and low utilization make the water hyacinth as a promising activated carbon source. To observe the most optimal physical properties of AC, this study also compares various activation temperatures. In this study, full cell LIC was fabricated using LTO based anode, and water hyacinth derived AC as the cathode. The LIC full cell was further characterized to see the material properties and electrochemical performance. Water hyacinth derived LIC can achieve a specific capacitance of 32.11 F/g, the specific energy of 17.83 Wh/kg, and a specific power of 160.53 W/kg.


2010 ◽  
Vol 123-125 ◽  
pp. 1099-1102
Author(s):  
Ki Seok Kim ◽  
Soo Jin Park

Recently core/shell nanostructures including nanotubes, nanowires, and nanofibers have a considerable attension because multiple or enhanced functionality can be obtained by the synergistic effect of different materials in the formation of a core/shell structure. In this work, porous carbon/carbon core/shell carbon electrode (P-C/C-CE) composed of core graphene and disordered shells were prepared to obtain a new type of carbon electrode materials. The disordered carbon shells were prepared by coating of polyaniline onto the graphene by in-situ polymerization in the presence of nano-sized silica and subsequent carbonization at 850°C. After carbonization, P-C/C-CE showed the hollow structure and crystallinity. In addition, P-C/C-CE exhibited superior electrochemical performance compared to graphene and graphene/PANI composites, which was attributed to the high surface area of P-C/C-CE and the presence of nitrogen groups formed onto carbon electrode after the carbonization of shell polyaniline.


2020 ◽  
Vol 4 (6) ◽  
pp. 3029-3041 ◽  
Author(s):  
M. Karnan ◽  
A. G. Karthick Raj ◽  
K. Subramani ◽  
S. Santhoshkumar ◽  
M. Sathish

The effect of electrolytes on activated porous carbon was extensively studied using different electrolytes. A symmetric supercapacitor cell in redox additive electrolyte delivered a high energy (58.5 W h kg−1) and power density (9 kW kg−1).


2020 ◽  
Vol 20 (5) ◽  
pp. 2728-2735 ◽  
Author(s):  
Di Zhang ◽  
Yanchun Xue ◽  
Jiale Chen ◽  
Xingmei Guo ◽  
Dandan Yang ◽  
...  

Biomass-derived porous carbons are considered as one of the most promising electrode materials for supercapacitors due to their low-cost and natural abundance. In this work, pinecone is used to fabricate biomass N, S, O-doped porous carbon via one-step carbonization process with KOH activation. By optimizing the additive amount of KOH and calcination temperature, the asprepared product shows a high specific surface area and pore volume up to 1593.8 m2 g−1 and 0.8582 cm3 g−1, respectively. As an electric double-layer capacitor (EDLC) electrode, the N, S, O-doped porous carbon exhibits a high specific capacitance of 285 F g−1 at 0.5 A g−1 and good rate performance with a capacitance retention of 78.6% from 0.5 to 20 A g−1. Furthermore, the as-assembled symmetric supercapacitor with 6 mol L−1 KOH as electrolyte possesses a promising energy density of 6.34 Wh kg−1 and a power density of 250 W kg−1. Outstanding cycling stability was also demonstrated with 94.4% capacitance retention after 10,000 charge/discharge cycles at 1 A g−1.


2016 ◽  
Vol 846 ◽  
pp. 497-504 ◽  
Author(s):  
Mohamad Deraman ◽  
Najah Syahirah Mohd Nor ◽  
Erman Taer ◽  
Baharudin Yatim ◽  
Awitdrus ◽  
...  

Energy and power capability of a supercapacitor is important because of its function to provide backup power or pulse current in electronic/electric products or systems. The choice of its electrode materials, typically such as carbon, metal oxide or conducting polymer determines the mechanism of its energy storage process. This short review focuses on the supercapacitors using porous carbon electrode prepared, respectively, from fibers of oil palm empty fruit bunches. The specific energy and specific power of these supercapacitors were analyzed to observe their trend of change with respect to the electrode preparation parameters affecting the porosity, structure, surface chemistry and electrical conductivity of electrodes, and thence influence the energy and power capability of a supercapacitor. This review found that the trend of change in specific energy and specific power was not in favor of the expectation that both the specific energy and specific power should be in increasing trend with a significant progress.


2016 ◽  
Vol 4 (15) ◽  
pp. 5623-5631 ◽  
Author(s):  
Fujun Miao ◽  
Changlu Shao ◽  
Xinghua Li ◽  
Kexin Wang ◽  
Na Lu ◽  
...  

Three-dimensional freestanding hierarchically porous carbon was successfully fabricated and assembled in a symmetric supercapacitor presenting outstanding electrochemical performance.


Sign in / Sign up

Export Citation Format

Share Document