Transcriptional regulation of the human UDP-galactose:ceramide galactosyltransferase (hCGT) gene expression: Functional role of GC-box and CRE

2003 ◽  
Vol 20 (5) ◽  
pp. 339-351 ◽  
Author(s):  
Tewin Tencomnao ◽  
Dmitri Kapitonov ◽  
Erhard Bieberich ◽  
Robert K. Yu
Plants ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 466
Author(s):  
Marie-Christine Carpentier ◽  
Cécile Bousquet-Antonelli ◽  
Rémy Merret

The recent development of high-throughput technologies based on RNA sequencing has allowed a better description of the role of post-transcriptional regulation in gene expression. In particular, the development of degradome approaches based on the capture of 5′monophosphate decay intermediates allows the discovery of a new decay pathway called co-translational mRNA decay. Thanks to these approaches, ribosome dynamics could now be revealed by analysis of 5′P reads accumulation. However, library preparation could be difficult to set-up for non-specialists. Here, we present a fast and efficient 5′P degradome library preparation for Arabidopsis samples. Our protocol was designed without commercial kit and gel purification and can be easily done in one working day. We demonstrated the robustness and the reproducibility of our protocol. Finally, we present the bioinformatic reads-outs necessary to assess library quality control.


2014 ◽  
Vol 32 (4_suppl) ◽  
pp. 74-74
Author(s):  
Yoshiaki Yamamoto ◽  
Yohann Loriot ◽  
Eliana Beraldi ◽  
Tianyuan Zhou ◽  
Youngsoo Kim ◽  
...  

74 Background: While recent reports link androgen receptor (AR) variants (AR-Vs) to castration resistant prostate cancer (CRPC), the biological significance of AR-Vs in AR-regulated cell survival and proliferation, independent of AR full length (AR-FL), remains controversial. To define the functional role of AR-FL and AR-Vs in MDV3100-resistant (MDV-R), we designed antisense oligonucleotide (ASO) targeting exon 1 and exon 8 in AR to knockdown AR-FL alone or in combination with AR-Vs and examined these effects in MDV-R LNCaP-derived cells in vitro and in vivo. Methods: We generated by selection MDV-R LNCaP-derived sub-lines that uniformly expressed high levels of both AR-FL and AR-V7 compared to CRPC LNCaP xenografts. Cell growth rates, protein and gene expression were analyzed using crystal violet assay, western blotting and real-time PCR, respectively. Exon 1 and 8 AR-ASO were evaluated in MDV-R49F CRPC LNCaP xenografts. Results: AR-V7 was transiently transfected in MDV-R49F cells and differential knockdown of AR-V7 and/or AR-FL by exon 1 versus exon 8 AR-ASO was used to evaluate relative biologic contributions of AR-FL versus AR-V7 in MDV-R LNCaP AR-V7 overexpressing cells. Exon 1 and 8 AR-ASO treatment in these cells similarly decreased prostate-specific antigen (PSA) expression and induced apoptosis as measured by caspase-3 and PARP cleavage and cell growth inhibition. To further define the functional role of AR-Vs in MDV-R LNCaP cells, we used a CE3 siRNA that specifically silenced AR-V7, but not AR-FL in MDV-R LNCaP cells. AR-V7 knockdown did not decrease PSA levels, did not induce apoptosis, and did not inhibit cell growth. In MDV-R LNCaP cells, exon 1 and 8 ASO similarly suppressed cell growth and AR-regulated gene expression in vitro and in vivo. Conclusions: These results indicate that the AR remains an important driver of MDV3100 resistance and, the biologic consequences mainly driven by AR-FL in MDV-R LNCaP models.


2021 ◽  
Author(s):  
◽  
Kathrin Maly

Osteoarthritis (OA) is a slowly progressing disease, resulting in the degradation of cartilage and the loss of joint functionality. The cartilage extracellular matrix (ECM) is degraded and undergoes remodelling in OA progression. Chondrocytes start to express degrading proteases but are also reactivated and synthesise ECM proteins. The spectrum of these newly synthesised proteins and their involvement in OA specific processes and cartilage repair is hardly investigated. Human articular cartilage obtained from OA patients undergoing knee replacement surgery was evaluated according to the OARSI histopathology grading system. Healthy, non-OA cartilage samples were used as controls. The expression and distribution of thrombospondin-4 (TSP-4) and the closely related COMP were analysed on the gene level by PCR and on the protein level by immunohistology and immunoblot assays. The potential of TSP-4 as a diagnostic marker was evaluated by immunoblot assays, using serum samples from OA patients and healthy individuals. The functional role of both proteins was further investigated in in vitro studies using chondrocytes isolated from femoral condyles of healthy pigs. The effect of COMP and TSP-4 on chondrocyte migration and attachment was investigated via transwell and attachment assays, respectively. Moreover, the potential of COMP and TSP-4 to modulate the chondrocyte phenotype by inducing gene expression, ECM protein synthesis and matrix formation was investigated by immunofluorescence staining and qPCR. The activation of cartilage relevant signalling pathways was investigated by immunoblot assays. These results showed for the first time the presence of TSP-4 in articular cartilage. Its amount dramatically increased in OA compared to healthy cartilage and correlated positively with OA severity. In healthy cartilage TSP-4 was primarily found in the superficial zone while it was wider distributed in the middle and deeper zones of OA cartilage. The amount of specific TSP-4 fragments was increased in sera of OA patients compared to healthy controls, indicating a potential to serve as an OA biomarker. COMP was ubiquitously expressed in healthy cartilage but degraded in early as well as re-expressed in late-stage OA. The overall protein levels between OA severity grades were comparable. Contrary to TSP-4, COMP was localised primarily in the upper zone of OA cartilage, in particular in areas with severe damage. COMP could attract chondrocytes and facilitated their attachment, while TSP-4 did not affect these processes. COMP and TSP 4 were generally weak inducers of gene expression, although both could induce COL2A1 and TSP-4 additionally COL12A1 and ACAN after 6 h. Correlating data were obtained on the protein level: COMP and TSP-4 promoted the synthesis and matrix formation of collagen II, collagen IX, collagen XII and proteoglycans. In parallel, both proteins suppressed chondrocyte hypertrophy and dedifferentiation by reducing collagen X and collagen I. By analysing the effect of COMP and TSP-4 on intracellular signalling, both proteins induced Erk1/2 phosphorylation and TSP-4 could further promote Smad2/3 signalling induced by TGF-β1. None of the two proteins had a direct or modulatory effect on Smad1/5/9 dependent signalling. In summary, COMP and TSP-4 contribute to ECM maintenance and repair by inducing the expression of essential ECM proteins and suppressing chondrocyte dedifferentiation. These effects might be mediated by Erk1/2 phosphorylation. The presented data demonstrate an important functional role of COMP and TSP-4 in both healthy and OA cartilage and provide a basis for further studies on their potential in clinical applications for OA diagnosis and treatment.


2021 ◽  
Author(s):  
Keerthi T Chathoth ◽  
Liudmila A Mikheeva ◽  
Gilles Crevel ◽  
Jareth C. Wolfe ◽  
Ioni Hunter ◽  
...  

AbstractThe DNA in many organisms, including humans, is shown to be organised in topologically associating domains (TADs). InDrosophila, several architectural proteins are enriched at TAD borders, but it is still unclear whether these proteins play a functional role in the formation and maintenance of TADs. Here, we show that depletion of BEAF-32, Cp190, Chro and Dref leads to changes in TAD organisation and chromatin loops. Their depletion predominantly affects TAD borders located in heterochromatin, while TAD borders located in euchromatin are resilient to these mutants. Furthermore, transcriptomic data has revealed hundreds of genes displaying differential expression in these mutants and showed that the majority of differentially expressed genes are located within reorganised TADs. Our work identifies a novel and functional role for architectural proteins at TAD borders inDrosophilaand a link between TAD reorganisation and subsequent changes in gene expression.


2020 ◽  
Author(s):  
Daria Stepanova ◽  
Helen M. Byrne ◽  
Philip K. Maini ◽  
Tomás Alarcón

AbstractWe introduce a hybrid two-dimensional multiscale model of angiogenesis, the process by which endothelial cells (ECs) migrate from a pre-existing vascular bed in response to local environmental cues and cell-cell interactions, to create a new vascular network. Recent experimental studies have highlighted a central role of cell rearrangements in the formation of angiogenic networks. Our model accounts for this phenomenon via the heterogeneous response of ECs to their microenvironment. These cell rearrangements, in turn, dynamically remodel the local environment. The model reproduces characteristic features of angiogenic sprouting that include branching, chemotactic sensitivity, the brush border effect, and cell mixing. These properties, rather than being hardwired into the model, emerge naturally from the gene expression patterns of individual cells. After calibrating and validating our model against experimental data, we use it to predict how the structure of the vascular network changes as the baseline gene expression levels of the VEGF-Delta-Notch pathway, and the composition of the extracellular environment, vary. In order to investigate the impact of cell rearrangements on the vascular network structure, we introduce the mixing measure, a scalar metric that quantifies cell mixing as the vascular network grows. We calculate the mixing measure for the simulated vascular networks generated by ECs of different lineages (wild type cells and mutant cells with impaired expression of a specific receptor). Our results show that the time evolution of the mixing measure is directly correlated to the generic features of the vascular branching pattern, thus, supporting the hypothesis that cell rearrangements play an essential role in sprouting angiogenesis. Furthermore, we predict that lower cell rearrangement leads to an imbalance between branching and sprout elongation. Since the computation of this statistic requires only individual cell trajectories, it can be computed for networks generated in biological experiments, making it a potential biomarker for pathological angiogenesis.Author summaryAngiogenesis, the process by which new blood vessels are formed by sprouting from the pre-existing vascular bed, plays a key role in both physiological and pathological processes, including tumour growth. The structure of a growing vascular network is determined by the coordinated behaviour of endothelial cells in response to various signalling cues. Recent experimental studies have highlighted the importance of cell rearrangements as a driver for sprout elongation. However, the functional role of this phenomenon remains unclear. We formulate a new multiscale model of angiogenesis which, by accounting explicitly for the complex dynamics of endothelial cells within growing angiogenic sprouts, is able to produce generic features of angiogenic structures (branching, chemotactic sensitivity, cell mixing, etc.) as emergent properties of its dynamics. We validate our model against experimental data and then use it to quantify the phenomenon of cell mixing in vascular networks generated by endothelial cells of different lineages. Our results show that there is a direct correlation between the time evolution of cell mixing in a growing vascular network and its branching structure, thus paving the way for understanding the functional role of cell rearrangements in angiogenesis.


Sign in / Sign up

Export Citation Format

Share Document