Effects of Dietary Carnosine and Vitamin E on Antioxidant and Oxidative Status of Rats

2008 ◽  
Vol 78 (45) ◽  
pp. 230-237 ◽  
Author(s):  
Wissam Ibrahim ◽  
Vickie Tatumi ◽  
Che-Chung Yeh ◽  
Chuen Bin Hong ◽  
Ching Kuang Chow

The purpose of this study was to determine if moderate levels of carnosine supplement, alone or in combination with vitamin E, enhance antioxidant status and/or provide protection against oxidative stress. Fiftyfour one-month-old male Sprague-Dawley rats were fed a basal vitamin E-deficient diet supplemented with either 0, 200, or 1000 mg L-carnosine, and either 0, 10, or 100 IU vitamin E (as all rec-α-tocopheryl acetate) per kg diet for 15 weeks. The antioxidant and oxidative status were assessed in the skeletal muscle, liver, and blood. Dietary vitamin E, but not carnosine, increased levels of vitamin E, decreased tissue peroxidizability, prevented incidence of myodegeneration, and reduced erythrocyte hemolytic stress. The levels of conjugated dienes, protein carbonyls, ascorbic acid, and nonprotein sulfhydryls, and activities of catalase, glutathione (GSH) peroxidase, and aldehyde dehydrogenase were not significantly altered by dietary carnosine or vitamin E. The results obtained suggest that supplementation of carnosine at levels of up to 1000 mg/kg diet does not significantly affect the antioxidant and oxidative status of rats.

1998 ◽  
Vol 32 (2) ◽  
pp. 95-100 ◽  
Author(s):  
Chong‐Kuei Lii ◽  
Yuh‐Jane Ko ◽  
Ming‐Tsai Chiang ◽  
Wei‐Che Sung ◽  
Haw‐Wen Chen

1968 ◽  
Vol 22 (4) ◽  
pp. 751-755 ◽  
Author(s):  
J. Bunyan ◽  
J. Green ◽  
M. A. Cawthorne

1. Young rats were given, for 9 weeks, vitamin E-deficient diets containing either 20% or 10% casein, with and without a dietary supplement of 350 ppm D-α-tocopheryl acetate. For the next 5 weeks the casein content of the low-protein diets was decreased to 7%.2. The low-protein diets induced severe growth depression.3. The dialuric acid-induced haemolysis test showed that the rats given the 20% casein vitamin E-deficient diet were depleted of vitamin E, but that the rate of depletion on the lowcasein diet was slower.4. Haemoglobin levels were slightly decreased by the 10% casein diets after 9 weeks, but this difference was not found after 14 weeks, comparing 20% and 7% casein. Dietary vitamin E had no effect on haemoglobin levels or erythrocyte counts.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Piotr Sałek ◽  
Paweł Konieczka ◽  
Wiesław Przybylski ◽  
Danuta Jaworska ◽  
Aleksandra Rosikiewicz ◽  
...  

Abstract Feeding broilers diets high in n-3 long-chain polyunsaturated fatty acids (n-3 PUFA) increases their incorporation into the meat but it may compromises meat quality due to oxidation of lipids and protein. Increased dietary vitamin E (vE) level downregulate this process, but its excessive level might exceed the physiological requirements for the maintenance of redox balance. This study investigated the sensory characteristics and oxidative status of meat from chickens fed diets supplemented with fish oil (FO) with or without gradually increasing doses of vE. The meat samples were obtained from total of 27 female broilers of Ross 308 strain (9 birds per each of 3 dietary treatment), which were housed according to the standard management practice for commercial chicken houses over a period of 36 days. Chickens were fed diets contained 80 g/kg of supplemental fat, but the diets differed in fat composition; control diet (80 g/kg diet beef tallow as supplemental fat and a basal vE dose; 40 IU of dl-α-tocopheryl acetate; diet containing mixture of FO and beef tallow as supplemental fat (50:30 w/w g/kg diet) and a basal vE dose (E1), or diet (E2) as diet E1 but with gradually increasing vE dose (120/240 IU/kg diet fed between days 8-21 and days 22-36, respectively). The highest sensory quality and the lowest oxidative status of meat was found in the control chickens. FO decreased the sensory quality of the meat and increased lipid oxidation as well it had an impact on the lipid profile in muscle tissue (PUFA, n-3 ALA, EPA, DHA). Administration of a graded vE dose increased the sensory quality of the meat and did not limit lipid oxidation but maintained protein oxidation balance.


2020 ◽  
Vol 66 (164) ◽  
pp. 85-91
Author(s):  
ESRAA, FAHMY ◽  
A.A. SHARKAWY, ◽  
TH.A. IBRAHEIM, ◽  
DOHA YAHIA

2019 ◽  
Vol 97 (Supplement_2) ◽  
pp. 202-203
Author(s):  
Ding Wang ◽  
Young Dal Jang ◽  
G K Rentfrow ◽  
H J Monegue ◽  
M J Azain ◽  
...  

Abstract The study objective was to assess the contribution of fat source and vitamin E (VE) supplementation on growth performance, antioxidant status, and fatty acid profile in the liver of pigs at heavy slaughter weight (148.09 ±1.64 kg). A total of 72 individually-fed pigs (36 barrows, 36 gilts; 28.55 ±1.16 kg) were randomly assigned to 12 dietary treatments in a 2 × 6 factorial arrangement. Fat treatments were tallow and corn-oil. The VE treatments included four levels of α-tocopheryl-acetate (ATA; 11, 40, 100, and 200 ppm) and two levels of mixed tocopherols (primarily γ-tocopherol; 40 and 100 ppm). Liver samples were collected at slaughter. Data analysis were performed by ANOVA using GLM in SAS. No effect of dietary fat sources, isoforms of VE, and levels of γ-tocopherol were detected on growth performance or liver antioxidant status (GSH, GSSG, SOD, and MDA). Increasing dietary ATA linearly increased overall ADG (0.98, 1.02, 1.02, and 1.08 kg/day; P = 0.02) from 28 to 150 kg; overall ADG of pigs fed γ-tocopherol-diets was 1.07 and 1.04 kg/day, respectively. An interaction between fat sources and ATA was observed on cumulative ADG during Phase1-3 (28-100 kg; P = 0.04) and Phase1-4 (28-125 kg; P = 0.03) wherein pigs fed corn-oil-diet, but not tallow-diet, had increased ADG with increased dietary ATA. Increasing dietary ATA quadratically increased SOD activity (P < 0.05; highest at 100 ppm), and quadratically decreased MDA content (P < 0.05; lowest at 40 ppm) in the liver. Liver fatty acid profile was affected by fat source (P < 0.05) but not VE treatment, pigs fed corn-oil-diets had less SFA (34.23 vs. 35.45%; P = 0.02) and MUFA (11.98 vs. 18.38%; P < 0.0001), but more PUFA (49.14 vs. 40.78%; P < 0.0001) than pigs fed tallow-diets in the liver. Beneficial effects of dietary VE supplementation were observed on growth performance and antioxidant status of pigs under conditions of this study.


2019 ◽  
Vol 2019 ◽  
pp. 1-15 ◽  
Author(s):  
Khuzaidatul Azidah Ahmad Nazri ◽  
Norsyahida Mohd Fauzi ◽  
Fhataheya Buang ◽  
Qodriyah Haji Mohd Saad ◽  
Khairana Husain ◽  
...  

Gynura procumbens (Lour.) Merr. (GP) has been reported in previous studies to possess antihyperlipidaemic, antioxidative, and cardioprotective properties. This study was aimed to determine the effect of standardised 80% ethanol extract of GP on lipid profiles and oxidative status of hypercholesterolemic rats. Postmenopausal (PM) Sprague-Dawley rats were ovariectomised and fed with 2% cholesterol diet fortified with five times heated palm oil to develop hyperlipidaemia status. Two doses of the extract (250 and 500 mg/kg) and atorvastatin (10 mg/kg) were administered once daily via oral gavage for 24 weeks. Systolic blood pressure (SBP) was increased during the first month in the postmenopausal group and decreased with GP supplementation. Lipid droplets accumulation was shown at the tunica media (TM) area of the aorta in the postmenopausal group and reduced with GP supplementation. Total cholesterol (TC), total triglycerides (TG), low-density lipoprotein (LDL), and malondialdehyde (MDA) levels increased (p<0.05) at 3 and 6 months in the postmenopausal group and were reduced with GP supplementation. GP also increased high-density lipoprotein (HDL) level in the postmenopausal group. Superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx) activities were reduced in the postmenopausal group compared to control in the sham group but increased (p<0.05) with GP supplementation. The results showed that the higher dose of GP (500 mg/kg) gave better effect. GP has the ability to reduce oxidative stress and prevent membrane cell damage through antioxidant enzyme activity modification and lipid profile changes in postmenopausal rats related to atherosclerosis.


Sign in / Sign up

Export Citation Format

Share Document