scholarly journals Non-double-couple moment tensor of the March 25, 1998, Antarctic Earthquake: Composite rupture of strike-slip and normal faults

1999 ◽  
Vol 26 (22) ◽  
pp. 3401-3404 ◽  
Author(s):  
Keiko Kuge ◽  
Masayuki Kikuchi ◽  
Yoshiko Yamanaka
1983 ◽  
Vol 73 (2) ◽  
pp. 419-434
Author(s):  
Jeffery S. Barker ◽  
Charles A. Langston

abstract Teleseismic P-wave first motions for the M ≧ 6 earthquakes near Mammoth Lakes, California, are inconsistent with the vertical strike-slip mechanisms determined from local and regional P-wave first motions. Combining these data sets allows three possible mechanisms: a north-striking, east-dipping strike-slip fault; a NE-striking oblique fault; and a NNW-striking normal fault. Inversion of long-period teleseismic P and SH waves for the events of 25 May 1980 (1633 UTC) and 27 May 1980 (1450 UTC) yields moment tensors with large non-double-couple components. The moment tensor for the first event may be decomposed into a major double couple with strike = 18°, dip = 61°, and rake = −15°, and a minor double couple with strike = 303°, dip = 43°, and rake = 224°. A similar decomposition for the last event yields strike = 25°, dip = 65°, rake = −6°, and strike = 312°, dip = 37°, and rake = 232°. Although the inversions were performed on only a few teleseismic body waves, the radiation patterns of the moment tensors are consistent with most of the P-wave first motion polarities at local, regional, and teleseismic distances. The stress axes inferred from the moment tensors are consistent with N65°E extension determined by geodetic measurements by Savage et al. (1981). Seismic moments computed from the moment tensors are 1.87 × 1025 dyne-cm for the 25 May 1980 (1633 UTC) event and 1.03 × 1025 dyne-cm for the 27 May 1980 (1450 UTC) event. The non-double-couple aspect of the moment tensors and the inability to obtain a convergent solution for the 25 May 1980 (1944 UTC) event may indicate that the assumptions of a point source and plane-layered structure implicit in the moment tensor inversion are not entirely valid for the Mammoth Lakes earthquakes.


2021 ◽  
Author(s):  
Angela Carrillo Ponce ◽  
Torsten Dahm ◽  
Simone Cesca ◽  
Frederik Tilmann ◽  
Andrey Babeyko ◽  
...  

<p>When the earthquake rupture is complex and ruptures of multiple fault segments contribute to the total energy release, the produced wavefield is the superposition of individual signals produced by single subevents. Resolving source complexity for large, shallow earthquakes can be used to improve ground shaking and surface slip estimations, and thus tsunami models. The 2018 Mw 7.9 Alaska earthquake showed such complexity: according to previous studies, the rupture initiated as a right-lateral strike-slip fault on a N-S oriented fault plane, but then jumped onto a left-lateral strike-slip fault oriented westward. Rupture complexity and presence of multiple subevents may characterize a number of other earthquakes. However, even when individual subevents are spatially and/or temporally separated, it is very difficult to identify them from far field recordings. In order to model complex earthquakes we have implemented a multiple double couple inversion scheme within Grond, a tool devoted to the robust characterization of earthquake source parameters included in the Pyrocko software. Given the large magnitude of the target earthquake, we perform our source inversions using broadband body waves data (P and S phases) at teleseismic distances. Our approach starts with a standard moment tensor inversion, which allows to get more insights about the centroid location and overall moment release. These values can then be used to constrain the double source inversion. We discuss the performance of the inversion for the Alaska earthquake, using synthetic and real data. First, we generated realistic synthetic waveforms for a two-subevents source, assuming double couple sources with the strike-slip mechanisms proposed for the Alaska earthquake. We model the synthetic dataset both using a moment tensor and a double double couple source, and demonstrate the stability of the double double couple inversion, which is able to reconstruct the two focal mechanisms, the moment ratio and the relative centroid locations of the two subevents. Synthetic tests show that the inversion accuracy can be in some cases reduced, in presence of noisy data and when the interevent time between subevents is short. A larger noise addition affects the retrieval of the focal mechanism orientations only in some cases, but in general all the parameters were well retrieved. Then, we test our tool using real data for the earthquake. The single source inversion shows that the centroid is shifted 27 s in time and 40 km towards NE with respect to the original assumed location retrieved from the gCMT catalogue. The following double double couple source inversion resolves two subevents with right-lateral and left-lateral strike-slip focal mechanisms and Mw 7.6 and 7.8 respectively. The subevent centroids are separated by less than 40 km in space and less than 20 s in time.</p>


2020 ◽  
Author(s):  
Richard Walters ◽  
Tim Craig ◽  
Laura Gregory ◽  
Russell Azad Khan

<p>Large continental earthquakes necessarily involve cascading rupture of multiple faults or segments (e.g. El Mayor-Cucapah 2010). But these same critically-stressed systems sometimes rupture in drawn-out sequences of smaller earthquakes over days or years (e.g. Central Italy 2016), instead of in a single large event. Due to the similarity in the initial conditions of both scenarios, seismic sequences may be considered as ‘failed’ multi-segment earthquakes, whereby cascading rupture is prematurely halted before all available slip deficit is released.</p><p>These two modes of strain-release have vastly different implications for seismic hazard. Recent work on the 2016 Central Italy earthquake sequence, which is the first seismic sequence to be studied with modern high-quality geodetic and seismological datasets, showed that complexity in fault structure appeared to exercise a dual control on both the timing and sizes of events throughout this sequence. However, it is unclear if this structural control is common for all continental seismic sequences, how important seismic sequences are for the global seismic moment budget, and how this contribution to moment budget may vary between different tectonic regions.</p><p>Here we select shallow crustal continental earthquakes from the Global Centroid Moment Tensor catalog, and identify seismic sequences as agglomerates of clustered pairs of earthquakes where the summed moment (M<sub>0</sub>) of all aftershocks is greater than 50% of the M<sub>0</sub> of the first event in the sequence. We analyse the relative number of seismic sequences compared to other earthquakes for normal, reverse, and strike-slip faulting regions, and also calculate the relative M<sub>0</sub> release of seismic sequences and other earthquakes in these three regimes.</p><p>We find that although seismic sequences are equally common by number in all continental tectonic regimes, seismic sequences account for a much higher proportion of M<sub>0</sub> release for normal faults (~20%) than for reverse faults (~10%), with strike-slip faults intermediate between these two end-members. We also find that the proportion of M<sub>0</sub> release in seismic sequences is higher for events that occur in regions characterised by a diversity of different earthquake types (e.g. both reverse and strike-slip faulting) than for events that occur in regions characterised by a single earthquake type (e.g. strike-slip faulting only). Together these findings imply that complexity of fault network is an important factor in controlling the occurrence of large-M<sub>0</sub> seismic sequences, and that ‘failed’ multi-segment earthquakes and therefore large-M<sub>0</sub> seismic sequences are more likely to occur in regions with complex fault networks.</p>


2021 ◽  
Vol 9 ◽  
Author(s):  
Melissa O. Anderson ◽  
Chantal Norris-Julseth ◽  
Kenneth H. Rubin ◽  
Karsten Haase ◽  
Mark D. Hannington ◽  
...  

The transition from subduction to transform motion along horizontal terminations of trenches is associated with tearing of the subducting slab and strike-slip tectonics in the overriding plate. One prominent example is the northern Tonga subduction zone, where abundant strike-slip faulting in the NE Lau back-arc basin is associated with transform motion along the northern plate boundary and asymmetric slab rollback. Here, we address the fundamental question: how does this subduction-transform motion influence the structural and magmatic evolution of the back-arc region? To answer this, we undertake the first comprehensive study of the geology and geodynamics of this region through analyses of morphotectonics (remote-predictive geologic mapping) and fault kinematics interpreted from ship-based multibeam bathymetry and Centroid-Moment Tensor data. Our results highlight two notable features of the NE Lau Basin: 1) the occurrence of widely distributed off-axis volcanism, in contrast to typical ridge-centered back-arc volcanism, and 2) fault kinematics dominated by shallow-crustal strike slip-faulting (rather than normal faulting) extending over ∼120 km from the transform boundary. The orientations of these strike-slip faults are consistent with reactivation of earlier-formed normal faults in a sinistral megashear zone. Notably, two distinct sets of Riedel megashears are identified, indicating a recent counter-clockwise rotation of part of the stress field in the back-arc region closest to the arc. Importantly, the Riedel structures identified in this study directly control the development of complex volcanic-compositional provinces, which are characterized by variably-oriented spreading centers, off-axis volcanic ridges, extensive lava flows, and point-source rear-arc volcanoes. This study adds to our understanding of the geologic and structural evolution of modern backarc systems, including the association between subduction-transform motions and the siting and style of seafloor volcanism.


2020 ◽  
Vol 12 (1) ◽  
pp. 479-490
Author(s):  
Ahu Kömeç Mutlu

AbstractThis study focuses on the seismicity and stress inversion analysis of the Simav region in western Turkey. The latest moderate-size earthquake was recorded on May 19, 2011 (Mw 5.9), with a dense aftershock sequence of more than 5,000 earthquakes in 6 months. Between 2004 and 2018, data from earthquake events with magnitudes greater than 0.7 were compiled from 86 seismic stations. The source mechanism of 54 earthquakes with moment magnitudes greater than 3.5 was derived by using a moment tensor inversion. Normal faults with oblique-slip motions are dominant being compatible with the NE-SW extension direction of western Turkey. The regional stress field is assessed from focal mechanisms. Vertically oriented maximum compressional stress (σ1) is consistent with the extensional regime in the region. The σ1 and σ3 stress axes suggest the WNW-ESE compression and the NNE-SSW dilatation. The principal stress orientations support the movement direction of the NE-SW extension consistent with the mainly observed normal faulting motions.


1983 ◽  
Vol 73 (3) ◽  
pp. 813-829
Author(s):  
P. Yi-Fa Huang ◽  
N. N. Biswas

abstract This paper describes the characteristics of the Rampart seismic zone by means of the aftershock sequence of the Rampart earthquake (ML = 6.8) which occurred in central Alaska on 29 October 1968. The magnitudes of the aftershocks ranged from about 1.6 to 4.4 which yielded a b value of 0.96 ± 0.09. The locations of the aftershocks outline a NNE-SSW trending aftershock zone about 50 km long which coincides with the offset of the Kaltag fault from the Victoria Creek fault. The rupture zone dips steeply (≈80°) to the west and extends from the surface to a depth of about 10 km. Fault plane solutions for a group of selected aftershocks, which occurred over a period of 22 days after the main shock, show simultaneous occurrences of strike-slip and normal faults. A comparison of the trends in seismicity between the neighboring areas shows that the Rampart seismic zone lies outside the area of underthrusting of the lithospheric plate in southcentral and central Alaska. The seismic zone outlined by the aftershock sequence appears to represent the formation of an intraplate fracture caused by regional northwest compression.


2004 ◽  
Vol 141 (5) ◽  
pp. 565-572 ◽  
Author(s):  
YUVAL BARTOV ◽  
AMIR SAGY

A newly discovered active small-scale pull-apart (Mor structure), located in the western part of the Dead Sea Basin, shows recent basin-parallel extension and strike-slip faulting, and offers a rare view of pull-apart internal structure. The Mor structure is bounded by N–S-trending strike-slip faults, and cross-cut by low-angle, E–W-trending normal faults. The geometry of this pull-apart suggests that displacement between the two stepped N–S strike-slip faults of the Mor structure is transferred by the extension associated with the normal faults. The continuing deformation in this structure is evident by the observation of at least three deformation episodes between 50 ka and present. The calculated sinistral slip-rate is 3.5 mm/yr over the last 30 000 years. This slip rate indicates that the Mor structure overlies the currently most active strike-slip fault within the western border of the Dead Sea pull-apart. The Mor structure is an example of a small pull-apart basin developed within a larger pull-apart. This type of hierarchy in pull-apart structures is an indication for their ongoing evolution.


2016 ◽  
Vol 59 ◽  
Author(s):  
Laura Scognamiglio ◽  
Elisa Tinti ◽  
Matteo Quintiliani

<p>We present the revised Time Domain Moment Tensor (TDMT) catalogue for earthquakes with M_L larger than 3.6 of the first month of the ongoing Amatrice seismic sequence (August 24th - September 25th). Most of the retrieved focal mechanisms show NNW–SSE striking normal faults in agreement with the main NE-SW extensional deformation of Central Apennines. We also report a preliminary finite fault model analysis performed on the larger aftershock of this period of the sequence (M_w 5.4) and discuss the obtained results in the framework of aftershocks distribution.</p>


1982 ◽  
Vol 72 (2) ◽  
pp. 439-456
Author(s):  
Thorne Lay ◽  
Jeffrey W. Given ◽  
Hiroo Kanamori

Abstract The seismic moment and source orientation of the 8 November 1980 Eureka, California, earthquake (Ms = 7.2) are determined using long-period surface and body wave data obtained from the SRO, ASRO, and IDA networks. The favorable azimuthal distribution of the recording stations allows a well-constrained mechanism to be determined by a simultaneous moment tensor inversion of the Love and Rayleigh wave observations. The shallow depth of the event precludes determination of the full moment tensor, but constraining Mzx = Mzy = 0 and using a point source at 16-km depth gives a major double couple for period T = 256 sec with scalar moment M0 = 1.1 · 1027 dyne-cm and a left-lateral vertical strike-slip orientation trending N48.2°E. The choice of fault planes is made on the basis of the aftershock distribution. This solution is insensitive to the depth of the point source for depths less than 33 km. Using the moment tensor solution as a starting model, the Rayleigh and Love wave amplitude data alone are inverted in order to fine-tune the solution. This results in a slightly larger scalar moment of 1.28 · 1027 dyne-cm, but insignificant (&lt;5°) changes in strike and dip. The rake is not well enough resolved to indicate significant variation from the pure strike-slip solution. Additional amplitude inversions of the surface waves at periods ranging from 75 to 512 sec yield a moment estimate of 1.3 ± 0.2 · 1027 dyne-cm, and a similar strike-slip fault orientation. The long-period P and SH waves recorded at SRO and ASRO stations are utilized to determine the seismic moment for 15- to 30-sec periods. A deconvolution algorithm developed by Kikuchi and Kanamori (1982) is used to determine the time function for the first 180 sec of the P and SH signals. The SH data are more stable and indicate a complex bilateral rupture with at least four subevents. The dominant first subevent has a moment of 6.4 · 1026 dyne-cm. Summing the moment of this and the next three subevents, all of which occur in the first 80 sec of rupture, yields a moment of 1.3 · 1027 dyne-cm. Thus, when the multiple source character of the body waves is taken into account, the seismic moment for the Eureka event throughout the period range 15 to 500 sec is 1.3 ± 0.2 · 1027 dyne-cm.


Author(s):  
D. Chebrov ◽  
A. Chebrova ◽  
I. Abubakirov ◽  
E. Matveenko ◽  
S. Mityushkina ◽  
...  

The seismicity review of Kamchatka and surrounding territories for 2014 is given. In Kamchatka earthquake catalogue minimum local magnitude of completeness is MLmin=3.5, and for earthquakes under the Okhotsk sea with h≥350 kmMLmin=3.6. The Kamchatka earthquake catalogue for 2014 with ML3.5, published in the Appendix to this annual, includes 1114 events. 86 earthquakes of the catalogue with ML=3.35–6.2 were felt in Kamchatka and surrounding areas with seismic intensity I ranged from 2 to 5 according the MSK-64 scale. For all events with ML5.0 occurred in the area of responsibility of the KB GS RAS in 2014, an attempt to calculate the seismic moment tensor (SMT) was made. There are 40 such events in the regional catalogue. For 36 earthquakes, the SMT and depth h of the equivalent point source were calculated successfully. The calcu-lations were performed for the SMT double-couple model using a nonlinear algorithm. In 2014, a typical location of the earthquake epicenters was observed in the Kamchatka zone. In 2014, the seismicity level in all selected zones and in the region as a whole corresponded to the background one according to the “SESL’09” scale. The number of recorded events with ML3.6 and strong earthquakes with ML5.1 is close to the average annual value. Anomalous and outstanding events were not recorded.


Sign in / Sign up

Export Citation Format

Share Document