scholarly journals The first month of the 2016 central Italy seismic sequence: fast determination of time domain moment tensors and finite fault model analysis of the ML 5.4 aftershock

2016 ◽  
Vol 59 ◽  
Author(s):  
Laura Scognamiglio ◽  
Elisa Tinti ◽  
Matteo Quintiliani

<p>We present the revised Time Domain Moment Tensor (TDMT) catalogue for earthquakes with M_L larger than 3.6 of the first month of the ongoing Amatrice seismic sequence (August 24th - September 25th). Most of the retrieved focal mechanisms show NNW–SSE striking normal faults in agreement with the main NE-SW extensional deformation of Central Apennines. We also report a preliminary finite fault model analysis performed on the larger aftershock of this period of the sequence (M_w 5.4) and discuss the obtained results in the framework of aftershocks distribution.</p>

2021 ◽  
Author(s):  
Pınar Büyükakpınar ◽  
Mohammadreza Jamalreyhani ◽  
Mehdi Rezapour ◽  
Stefanie Donner ◽  
Nima Nooshiri ◽  
...  

&lt;p&gt;In May 2020 an earthquake with Mw 5.0 struck at ~40 km east of Tehran metropolis and ~15 km south of the Damavand stratovolcano. It was responsible for 2 casualties and 23 injured. The mainshock was preceded by a foreshock with Ml 2.9 and followed by a significant aftershock sequence, including ten events with Ml 3+. The occurrence of this event raised the question of its relation with volcanic activities and/or concern about the occurrence of larger future earthquakes in the capital of Iran. Tehran megacity is surrounded by several inner-city and adjacent active faults that correspond to high-risk seismic sources in the area. The Mosha fault with ~150 km long is one of the major active faults in central Alborz and east of Tehran. It has hosted several historical earthquakes (i.e. 1665 Mw 6.5 and 1830 Mw 7.1 earthquakes) in the vicinity of the 2020 Mw 5.0 Tehran earthquake&amp;#8217;s hypocenter. In this study, we evaluate the seismic sequence of the Tehran earthquake and obtain the full moment tensor inversion of this event and its larger aftershocks, which is a key tool to discriminate between tectonic and volcanic earthquakes. Furthermore, we obtain a robust characterization of the finite fault model of this event applying probabilistic earthquake source inversion framework using near-field strong-motion records and broadband seismograms, with an estimation of the uncertainties of source parameters. Due to the relatively weak magnitude and deeper centroid depth (~12 km), no static surface displacement was observed in the coseismic interferograms, and modeling performed by seismic records. Focal mechanism solution from waveform inversion, with a significant double-couple component, is compatible with the orientation of the sinistral north-dipping Mosha fault at the centroid location. The finite fault model suggests that the mainshock rupture propagated towards the northwest. This directivity enhanced the peak acceleration in the direction of rupture propagation, observed in strong-motion records. The 2020 moderate magnitude earthquake with 2 casualties, highlights the necessity of high-resolution seismic monitoring in the capital of Iran, which is exposed to a risk of destructive earthquakes with more than 10 million population. Our results are important for the hazard and risk assessment, and the forthcoming earthquake early warning system development in Tehran metropolis.&lt;/p&gt;


2016 ◽  
Vol 59 ◽  
Author(s):  
Alessandro Marchetti ◽  
Maria Grazia Ciaccio ◽  
Anna Nardi ◽  
Andrea Bono ◽  
Francesco Mariano Mele ◽  
...  

<p>The central Italy seismic sequence, started with the Mw = 6.0 Amatrice earthquake on August 24th 2016, is the first significant one after the Italian Seismic Bulletin (BSI) changed its analysis strategies in 2015. These new strategies consist on the release of the BSI every four months, the review of the events with ML ≥ 1.5 and the priority on the review of events with ML ≥ 3.5. Furthermore, in the last year we improved the bulletin tools and made possible the analysis of all the stations whose data are stored in the European Integrated Data Archive (EIDA). The new procedures and software utilities allowed, during the first month of 2016 emergency, to integrate, in the Bulletin, the temporary stations installed by the emergency group SISMIKO, both in real–time transmission and in stand-alone recording. In the early days of the sequence many of the BSI analysts were engaged in the monitoring room shifts, nevertheless at the end of August all events occurred in those days with ML ≥ 4 were analyzed; the largest event recovered and localized is a ML = 4.5 event immediately following the main shock. In September 2016, 83 events with ML ≥ 3.5 were analyzed and re-checked, the number of pickings greatly improved. The focal mechanism of the main shock was evaluated using first motion polarities, and compared with the available Time Domain Moment Tensors and Regional Centroid Moment Tensor. The first eight hours of the day on August 24th, the most critical for the INGV surveillance room, were carefully analyzed: the number of located events increased from 133 to 408. The magnitude of completeness, after the analysis of the BSI, has dropped significantly from about 3.5 to 2.7. The mainshock focal mechanism and the relative locations of the first 8 hours’ aftershocks give clues on the initial fault activation. The seismic sequence in November 2016 is still ongoing; it included a mainshock of Mw = 6.5 on October 30th and 3 events of magnitude greater than 5.0 one on August 24th and two on October 26th.</p>


2021 ◽  
Author(s):  
Kirill A. Sementsov ◽  
Sergey V. Kolesov ◽  
Anna V. Bolshakova ◽  
Mikhail A. Nosov

&lt;p&gt;Information on the earthquake source mechanism (Centroid Moment Tensor) becomes publicly available in a few minutes after the earthquake (for example, https://earthquake.usgs.gov/earthquakes or http://geofon.gfz-potsdam.de/eqinfo). Using this information, we can calculate the ocean bottom displacement in the earthquake area [Leonard, 2010; Okada, 1985] and then use this displacement as an input data for hydrodynamic simulation of the tsunami waves. Let us call this type of input data - Type 1. Somewhat later (and sometimes much later), than CMT, more detailed information on the rupture fault structure (Finite Fault Model) becomes available. According to Finite Fault Model, the rupture fault in the earthquake source consists of a certain number of segments characterized by their dip and strike angles. Each segment consists of a finite number of rectangular subfaults, for each of which a displacement vector, an activation time and a rise time are specified. By applying Okada's formulas to each subfault and using the principle of superposition, we can calculate the ocean bottom displacement in the earthquake area and also use it as an input data for tsunami simulations. Let us call this type of input data - Type 2. However, based on the Finite Fault Model, we are able to create a third type of input data (Type 3). To do this, it is necessary to take into account the displacement start time (subfault activation time) and the displacement duration (subfault rise time) of each subfault and consider the dynamics of the rupture process. In this case, we will be able to reconstruct not only the coseismic bottom displacement in the earthquake source (Type 2), but also describe the dynamics of the coseismic bottom displacement formation in the tsunami source (Type 3).&lt;/p&gt;&lt;p&gt;&amp;#160;&lt;/p&gt;&lt;p&gt;This paper compares the tsunami simulation results performed with the of different types of input data (Type 1, Type 2 and Type 3). We performed calculations for a number of large earthquakes at the beginning of the 21st century. We took all the earthquake source information from the USGS catalog (https://earthquake.usgs.gov/earthquakes). The bottom deformations of all three types were calculated using the ffaultdisp code (http://ocean.phys.msu.ru/projects/ffaultdisp/). Tsunami modeling was carried out using a combined 2D / 3D CPTM model [Nosov, Kolesov, 2019; Sementsov et al., 2019]. The simulation results are compared with each other as well as with the DART ocean bottom observatories records.&lt;/p&gt;&lt;p&gt;&amp;#160;&lt;/p&gt;&lt;p&gt;The study was supported by Russian Foundation for Basic Research (projects 20-35-70038, 19-05-00351, 20-07-01098).&lt;/p&gt;&lt;p&gt;&amp;#160;&lt;/p&gt;


2018 ◽  
Vol 34 (4) ◽  
pp. 1557-1583 ◽  
Author(s):  
Fabrizio Galadini ◽  
Emanuela Falcucci ◽  
Stefano Gori ◽  
Paolo Zimmaro ◽  
Daniele Cheloni ◽  
...  

The Central Italy earthquake sequence produced three main shocks: M6.1 24 August, M5.9 26 October, and M6.5 30 October 2016. Additional M5–5.5 events struck this territory on 18 January 2017 in the Campotosto area. Fault plane solutions for the main shocks exhibit normal faulting (characteristic of crustal extension occurring in the inner central Apennines). Significant evidence, including hypocenter locations, strike and dip angles of the moment tensors, inverted finite fault models (using GPS, interferometric aperture radar, and ground motion data), and surface rupture patterns, all point to the earthquakes having been generated on the Mt. Vettore–Mt. Bove fault system (all three main shocks) and on the Amatrice fault, in the northern sector of the Laga Mountains (portion of 24 August event). The earthquake sequence provides examples of both synthetic and antithetic ruptures on a single fault system (30 October event) and rupture between two faults (24 August event). We describe active faults in the region and their segmentation and present understanding of the potential for linkages between segments (or faults) in the generation of large earthquakes.


2017 ◽  
Vol 210 (2) ◽  
pp. 1206-1218 ◽  
Author(s):  
Zoe K. Mildon ◽  
Gerald P. Roberts ◽  
Joanna P. Faure Walker ◽  
Francesco Iezzi

Abstract In order to investigate the importance of including strike-variable geometry and the knowledge of historical and palaeoseismic earthquakes when modelling static Coulomb stress transfer and rupture propagation, we have examined the August–October 2016 A.D. and January 2017 A.D. central Apennines seismic sequence (Mw 6.0, 5.9, 6.5 in 2016 A.D. (INGV) and Mw 5.1, 5.5, 5.4, 5.0 in 2017 A.D. (INGV)). We model both the coseismic loading (from historical and palaeoseismic earthquakes) and interseismic loading (derived from Holocene fault slip-rates) using strike-variable fault geometries constrained by fieldwork. The inclusion of the elapsed times from available historical and palaeoseismological earthquakes and on faults enables us to calculate the stress on the faults prior to the beginning of the seismic sequence. We take account the 1316–4155 yr elapsed time on the Mt. Vettore fault (that ruptured during the 2016 A.D. seismic sequence) implied by palaeoseismology, and the 377 and 313 yr elapsed times on the neighbouring Laga and Norcia faults respectively, indicated by the historical record. The stress changes through time are summed to show the state of stress on the Mt. Vettore, Laga and surrounding faults prior to and during the 2016–2017 A.D. sequence. We show that the build up of stress prior to 2016 A.D. on strike-variable fault geometries generated stress heterogeneities that correlate with the limits of the main-shock ruptures. Hence, we suggest that stress barriers appear to have control on the propagation and therefore the magnitudes of the main-shock ruptures.


2019 ◽  
Author(s):  
Mauricio Fuentes ◽  
Sebastian Arriola ◽  
Sebastian Riquelme ◽  
Bertrand Delouis

Abstract. Chile host a great tsunamigenic potential along its coast, even with the large earthquakes occurred during the last decade, there is still a large amount of seismic energy to release. This permanent feature and the fact that the distance between the trench and the coast is just 100 km creates a difficult environment to do real time tsunami forecast. In Chile tsunami warnings are based on reports of the seismic events (hypocenter and magnitude) and a database of precomputed tsunami scenarios. However, because yet there is no answer to image the finite fault model within first minutes (before the first tsunami wave arrival), the precomputed scenarios consider uniform slip distributions. Here, we propose a scheme of processes to fill the gaps in-between blind zones due to waiting of demanding computational stages. The linear shallow water equations are solved to obtain a rapid estimation of the run-up distribution in the near field. Our results show that this linear method captures most of the complexity of the run-up heights in terms of shape and amplitude when compared with a fully non-linear tsunami code. Also, the run-up distribution is obtained in quasi real-time as soon as the seismic finite fault model is produced.


2021 ◽  
Vol 9 ◽  
Author(s):  
Federica Ferrarini ◽  
Rita de Nardis ◽  
Francesco Brozzetti ◽  
Daniele Cirillo ◽  
J Ramón Arrowsmith ◽  
...  

The Apenninic chain, in central Italy, has been recently struck by the Norcia 2016 seismic sequence. Three mainshocks, in 2016, occurred on August 24 (MW6.0), October 26 (MW 5.9) and October 30 (MW6.5) along well-known late Quaternary active WSW-dipping normal faults. Coseismic fractures and hypocentral seismicity distribution are mostly associated with failure along the Mt Vettore-Mt Bove (VBF) fault. Nevertheless, following the October 26 shock, the aftershock spatial distribution suggests the activation of a source not previously mapped beyond the northern tip of the VBF system. In this area, a remarkable seismicity rate was observed also during 2017 and 2018, the most energetic event being the April 10, 2018 (MW4.6) normal fault earthquake. In this paper, we advance the hypothesis that the Norcia seismic sequence activated a previously unknown seismogenic source. We constrain its geometry and seismogenic behavior by exploiting: 1) morphometric analysis of high-resolution topographic data; 2) field geologic- and morphotectonic evidence within the context of long-term deformation constraints; 3) 3D seismological validation of fault activity, and 4) Coulomb stress transfer modeling. Our results support the existence of distributed and subtle deformation along normal fault segments related to an immature structure, the Pievebovigliana fault (PBF). The fault strikes in NNW-SSE direction, dips to SW and is in right-lateral en echelon setting with the VBF system. Its activation has been highlighted by most of the seismicity observed in the sector. The geometry and location are compatible with volumes of enhanced stress identified by Coulomb stress-transfer computations. Its reconstructed length (at least 13 km) is compatible with the occurrence of MW≥6.0 earthquakes in a sector heretofore characterized by low seismic activity. The evidence for PBF is a new observation associated with the Norcia 2016 seismic sequence and is consistent with the overall tectonic setting of the area. Its existence implies a northward extent of the intra-Apennine extensional domain and should be considered to address seismic hazard assessments in central Italy.


Sign in / Sign up

Export Citation Format

Share Document