scholarly journals Some optical properties of smoke aerosol in Indonesia and tropical Australia

1999 ◽  
Vol 26 (10) ◽  
pp. 1393-1396 ◽  
Author(s):  
J. L. Gras ◽  
J. B. Jensen ◽  
K. Okada ◽  
M. Ikegami ◽  
Y. Zaizen ◽  
...  
2018 ◽  
Vol 11 ◽  
pp. 117862211877480 ◽  
Author(s):  
Yun H Park ◽  
Irina N Sokolik ◽  
Samuel R Hall

The quantification of the UV characteristics of smoke aerosols is valuable to UV Index forecasting, air quality studies, air chemistry studies, and assessments of the impacts on regional and global environmental changes. The wavelength dependence of the light absorption by smoke aerosol has been researched throughout the UV and visible spectral region and varies with fire type and aerosol composition. An objective of this study is to investigate the spectral optical properties (eg, extinction coefficient, single-scattering albedo, and asymmetry parameter), UV actinic fluxes, and radiative forcing of smoke of different fire regimes. The smoke aerosol information (eg, simulated smoke fields from biomass burning emission and vertical distribution of the mass concentration of smoke components) from WRF-Chem is used to distinguish 2 smoke types: flaming and smoldering. To compute the spectral optical properties for the fire regimes, the representative size distribution and spectral refractive index have been implemented into the Mie code, and the optical properties are used to run the tropospheric ultraviolet and visible radiative transfer model. We make comparisons between simulated model and measured actinic flux in the UV and visible spectra under smoke aerosol laden conditions. The WRF-Chem-SMOKE model simulates the smoke plume matched with fire locations and comparable aerosol optical depth (AOD) with satellite measurements. However, the correlation between the simulated and observed AOD is small, which implies that adjusting the fire size for the emission inputs and improving meteorological fields are required for further research. The smoke at selected locations reduces the UV actinic flux and increases the visible actinic flux above the plume at small solar zenith angles. The specific spectral response is dependent on the smoke type. Overall, the results of this investigation show that this approach is valuable to estimate the impact of smoke on UV and visible radiative fluxes.


Author(s):  
K. Tsuno ◽  
T. Honda ◽  
Y. Harada ◽  
M. Naruse

Developement of computer technology provides much improvements on electron microscopy, such as simulation of images, reconstruction of images and automatic controll of microscopes (auto-focussing and auto-correction of astigmatism) and design of electron microscope lenses by using a finite element method (FEM). In this investigation, procedures for simulating the optical properties of objective lenses of HREM and the characteristics of the new lens for HREM at 200 kV are described.The process for designing the objective lens is divided into three stages. Stage 1 is the process for estimating the optical properties of the lens. Firstly, calculation by FEM is made for simulating the axial magnetic field distributions Bzc of the lens. Secondly, electron ray trajectory is numerically calculated by using Bzc. And lastly, using Bzc and ray trajectory, spherical and chromatic aberration coefficients Cs and Cc are numerically calculated. Above calculations are repeated by changing the shape of lens until! to find an optimum aberration coefficients.


Author(s):  
A. Strojnik ◽  
J.W. Scholl ◽  
V. Bevc

The electron accelerator, as inserted between the electron source (injector) and the imaging column of the HVEM, is usually a strong lens and should be optimized in order to ensure high brightness over a wide range of accelerating voltages and illuminating conditions. This is especially true in the case of the STEM where the brightness directly determines the highest resolution attainable. In the past, the optical behavior of accelerators was usually determined for a particular configuration. During the development of the accelerator for the Arizona 1 MEV STEM, systematic investigation was made of the major optical properties for a variety of electrode configurations, number of stages N, accelerating voltages, 1 and 10 MEV, and a range of injection voltages ϕ0 = 1, 3, 10, 30, 100, 300 kV).


Author(s):  
Marcos F. Maestre

Recently we have developed a form of polarization microscopy that forms images using optical properties that have previously been limited to macroscopic samples. This has given us a new window into the distribution of structure on a microscopic scale. We have coined the name differential polarization microscopy to identify the images obtained that are due to certain polarization dependent effects. Differential polarization microscopy has its origins in various spectroscopic techniques that have been used to study longer range structures in solution as well as solids. The differential scattering of circularly polarized light has been shown to be dependent on the long range chiral order, both theoretically and experimentally. The same theoretical approach was used to show that images due to differential scattering of circularly polarized light will give images dependent on chiral structures. With large helices (greater than the wavelength of light) the pitch and radius of the helix could be measured directly from these images.


Author(s):  
R. B. Queenan ◽  
P. K. Davies

Na ß“-alumina (Na1.67Mg67Al10.33O17) is a non-stoichiometric sodium aluminate which exhibits fast ionic conduction of the Na+ ions in two dimensions. The Na+ ions can be exchanged with a variety of mono-, di-, and trivalent cations. The resulting exchanged materials also show high ionic conductivities.Considerable interest in the Na+-Nd3+-ß“-aluminas has been generated as a result of the recent observation of lasing in the pulsed and cw modes. A recent TEM investigation on a 100% exchanged Nd ß“-alumina sample found evidence for the intergrowth of two different structure types. Microdiffraction revealed an ordered phase coexisting with an apparently disordered phase, in which the cations are completely randomized in two dimensions. If an order-disorder transition is present then the cooling rates would be expected to affect the microstructures of these materials which may in turn affect the optical properties. The purpose of this work was to investigate the affect of thermal treatments upon the micro-structural and optical properties of these materials.


Author(s):  
Arno J. Bleeker ◽  
Mark H.F. Overwijk ◽  
Max T. Otten

With the improvement of the optical properties of the modern TEM objective lenses the point resolution is pushed beyond 0.2 nm. The objective lens of the CM300 UltraTwin combines a Cs of 0. 65 mm with a Cc of 1.4 mm. At 300 kV this results in a point resolution of 0.17 nm. Together with a high-brightness field-emission gun with an energy spread of 0.8 eV the information limit is pushed down to 0.1 nm. The rotationally symmetric part of the phase contrast transfer function (pctf), whose first zero at Scherzer focus determines the point resolution, is mainly determined by the Cs and defocus. Apart from the rotationally symmetric part there is also the non-rotationally symmetric part of the pctf. Here the main contributors are not only two-fold astigmatism and beam tilt but also three-fold astigmatism. The two-fold astigmatism together with the beam tilt can be corrected in a straight-forward way using the coma-free alignment and the objective stigmator. However, this only works well when the coefficient of three-fold astigmatism is negligible compared to the other aberration coefficients. Unfortunately this is not generally the case with the modern high-resolution objective lenses. Measurements done at a CM300 SuperTwin FEG showed a three fold-astigmatism of 1100 nm which is consistent with measurements done by others. A three-fold astigmatism of 1000 nm already sinificantly influences the image at a spatial frequency corresponding to 0.2 nm which is even above the point resolution of the objective lens. In principle it is possible to correct for the three-fold astigmatism a posteriori when through-focus series are taken or when off-axis holography is employed. This is, however not possible for single images. The only possibility is then to correct for the three-fold astigmatism in the microscope by the addition of a hexapole corrector near the objective lens.


Author(s):  
Y. Harada ◽  
K. Tsuno ◽  
Y. Arai

Magnetic objective lenses, from the point of view of pole piece geometry, can he roughly classified into two types, viz., symmetrical and asymmetrical. In the case of the former, the optical properties have been calculated by several authors1-3) and the results would appear to suggest that, in order to reduce the spherical and chromatic aberration coefficients, Cs and Cc, it is necessary to decrease the half-width value of the axial field distribution and to increase the peak flux density. The expressions for either minimum Cs or minimum Cc were presented in the form of ‘universal’ curves by Mulvey and Wallington4).


Sign in / Sign up

Export Citation Format

Share Document