scholarly journals A 700-year record of atmospheric circulation developed from the Law Dome ice core, East Antarctica

2002 ◽  
Vol 107 (D22) ◽  
Author(s):  
Joseph M. Souney
1990 ◽  
Vol 14 ◽  
pp. 365-365
Author(s):  
N.W. Young ◽  
M. De Angelis ◽  
D. Davies

An ice core, drilled near the margin of the Law Dome ice cap at Cape Folger, has been analysed for trace chemical content. The concentration of the major anions and cations has been measured on samples selected from the ice core to give information on the major environmental changes which have occurred in the period 6–26 ka B.P. The chemical species can be divided into two fractions representing the two major sources of trace chemicals; marine and continental sources. Four species are chosen to illustrate the main features in the record; aluminium as an indicator of the continental fraction, sodium and magnesium as indicators of the marine fraction and methane sulphonic acid (MSA). Sodium and magnesium concentrations in the Law Dome core are predominantly derived from marine sources, although they usually include also small contributions from the continental sources. MSA has a marine biogenic source and exhibits a pattern which is generally unrelated to the variations in the two main fractions. Measured oxygen isotope ratios provide an additional data source. Concentrations of the same species in the Dome C core (De Angelis and others, 1982; Saigne and Legrand, 1987) are used as indicators of the global background atmospheric chemical content, and by inter-comparison of the records from the two cores are used to derive a proxy chronology for the Law Dome core.The interval in each core corresponding to the final stages of the Last Glacial Maximum (LGM) can be identified from the oxygen isotope records (Budd and Morgan, 1977; Lorius and others, 1984). Both cores have high aluminium concentrations in this interval reducing to very low concentrations towards the end of the transition to the Holocene. A similar sharp change from high to very low concentration is also observed for MSA. Very low concentrations of other species are also observed in this interval in the transition period. By assuming that these changes in the two cores are contemporaneous, the age scale from the Dome C core (Lorius and others, 1984) can be applied to the Law Dome core. An age of 13 ka B.p. is assigned to the very clean interval near the end of the transition. Other, less obvious, events in the chemical and isotope records distinguish intervals corresponding to ages of approximately 7.5, 15.5, and 26 ka B.P. Ages for intermediate intervals are derived by interpolation and reference to a modelled age-depth relation.The records from each of the cores for MSA and the continental fraction, represented by aluminium, show similar features at the Law Dome site as at Dome C. But the records for the marine fraction show distinct differences. On Law Dome there is a clear trend of decreasing concentration with depth, consistent with the ice at greater depth having an origin at higher elevation further inland on the ice cap. Very low concentrations occur in the lower part of the core, which includes the interval corresponding to the LGM. By way of contrast, at Dome C the concentration of sodium in the interval corresponding to the Holocene is low, but relatively higher in the LGM interval. The concentrations during the LGM, of both the marine and continental fractions, are lower in Law Dome by a factor generally between 1 and 2 than those at Dome C as a result of dilution caused by the higher precipitation and snow accumulation rates near the coast.For interpretation of the records, the concentrations in the Dome C core are assumed to indicate changes in the global background atmospheric loading and atmospheric circulation. On Law Dome, the general trend of decreasing concentra- tion with depth for the marine fraction is modulated by variations in the background atmospheric loading, and the effect of variations in past ice sheet and sea ice extent and thus distance to the source. At about 11 ka B.P., sodium and magnesium concentrations increase sharply to about three times the background level, and are maintained till about 9.5 ka B.P. This event is not apparent in the Dome C record. During the period 6–8 ka B P., sodium and magnesium concentrations are higher by a factor between 1.5 and 2 in conjunction with colder (more negative) values of the oxygen isotope ratio. There is some evidence of similar variations in the Dome C record.This suggests two separate scenarios. For the period 9.5–11 ka B P., one or more of the following events probably occurred: a change in the seasonal pattern of variation in sea ice extent and distribution; lesser sea ice extent; more open water closer to the coast; increased storminess in the coastal region, each of which could lead to an increased supply of material with marine source (sodium and magnesium) by either more vigorous atmospheric circulation or less distance to the source. Coincidentally, increased storminess is consistent with an increased fraction of open water in the sea ice zone. But there is apparently no change in the concnetration of MSA above background levels during this period. This could provide a constraint on the possible mechanisms causing the observed event. For the more recent period, 6–8 ka B.P., the changes found in both cores probably reflect climatic variation on a broader hemispheric or global scale, involving lower temperatures in at least the high latitudes, probably increased zonal atmospheric circulation, and perhaps changes in the seasonal sea ice distribution and total extent.


2002 ◽  
Vol 35 ◽  
pp. 306-312 ◽  
Author(s):  
Barbara Delmonte ◽  
Jean Robert Petit ◽  
Valter Maggi

AbstractMeasurements of the concentration and size distribution of dust particles found in the EPICA (European Project for Ice Coring in Antarctica) Dome C ice core, East Antarctica, provide records covering the last 27000 years. the total concentration decreased drastically by a factor of 55 from the Last Glacial Maximum (LGM) (800 ppb) to the Holocene (15 ppb), with a well-marked absolute minimum around 11500–11600 years ago. This latter almost corresponds to the end of the Younger Dryas in Greenland, which was marked by a methane peak related to the expansion of tropical wetlands. Assuming that the source region forAntarctic dust is the southern part of South America, the Antarctic dust minimum suggests a larger geographical extent for this wet period. the volume (mass)-size distribution of the particles displays a mode which is close to 2 μm in diameter, shifting from 1.9 μm in the glacial period to 2.07 μm in the Holocene. As opposed to previous results from old Dome C, EPICA suggests a greater proportion of large particles in Holocene samples than in LGM samples. In addition, for the period 13 000–2000BP, structured millennial-scale oscillations of the dust mode appear. These are especially well marked before 5000 years ago, with higher frequencies also present. the difference between LGM and Holocene particle distributions may be related to changes in the pattern of dust transport to East Antarctica. At Dome C the greater proportion of coarse particles observed during the Holocene suggests greater direct meridional transport. During the LGM, atmospheric circulation was likely more zonal, causing a greater amount of large dust particles to be removed from the atmosphere before reaching Antarctica. Changes in atmospheric circulation could also be the cause of the millennial-scale dust-mode oscillations during the Holocene.


2013 ◽  
Vol 26 (3) ◽  
pp. 710-725 ◽  
Author(s):  
Tessa R. Vance ◽  
Tas D. van Ommen ◽  
Mark A. J. Curran ◽  
Chris T. Plummer ◽  
Andrew D. Moy

Abstract ENSO causes climate extremes across and beyond the Pacific basin; however, evidence of ENSO at high southern latitudes is generally restricted to the South Pacific and West Antarctica. Here, the authors report a statistically significant link between ENSO and sea salt deposition during summer from the Law Dome (LD) ice core in East Antarctica. ENSO-related atmospheric anomalies from the central-western equatorial Pacific (CWEP) propagate to the South Pacific and the circumpolar high latitudes. These anomalies modulate high-latitude zonal winds, with El Niño (La Niña) conditions causing reduced (enhanced) zonal wind speeds and subsequent reduced (enhanced) summer sea salt deposition at LD. Over the last 1010 yr, the LD summer sea salt (LDSSS) record has exhibited two below-average (El Niño–like) epochs, 1000–1260 ad and 1920–2009 ad, and a longer above-average (La Niña–like) epoch from 1260 to 1860 ad. Spectral analysis shows the below-average epochs are associated with enhanced ENSO-like variability around 2–5 yr, while the above-average epoch is associated more with variability around 6–7 yr. The LDSSS record is also significantly correlated with annual rainfall in eastern mainland Australia. While the correlation displays decadal-scale variability similar to changes in the interdecadal Pacific oscillation (IPO), the LDSSS record suggests rainfall in the modern instrumental era (1910–2009 ad) is below the long-term average. In addition, recent rainfall declines in some regions of eastern and southeastern Australia appear to be mirrored by a downward trend in the LDSSS record, suggesting current rainfall regimes are unusual though not unknown over the last millennium.


1990 ◽  
Vol 14 ◽  
pp. 365
Author(s):  
N.W. Young ◽  
M. De Angelis ◽  
D. Davies

An ice core, drilled near the margin of the Law Dome ice cap at Cape Folger, has been analysed for trace chemical content. The concentration of the major anions and cations has been measured on samples selected from the ice core to give information on the major environmental changes which have occurred in the period 6–26 ka B.P. The chemical species can be divided into two fractions representing the two major sources of trace chemicals; marine and continental sources. Four species are chosen to illustrate the main features in the record; aluminium as an indicator of the continental fraction, sodium and magnesium as indicators of the marine fraction and methane sulphonic acid (MSA). Sodium and magnesium concentrations in the Law Dome core are predominantly derived from marine sources, although they usually include also small contributions from the continental sources. MSA has a marine biogenic source and exhibits a pattern which is generally unrelated to the variations in the two main fractions. Measured oxygen isotope ratios provide an additional data source. Concentrations of the same species in the Dome C core (De Angelis and others, 1982; Saigne and Legrand, 1987) are used as indicators of the global background atmospheric chemical content, and by inter-comparison of the records from the two cores are used to derive a proxy chronology for the Law Dome core. The interval in each core corresponding to the final stages of the Last Glacial Maximum (LGM) can be identified from the oxygen isotope records (Budd and Morgan, 1977; Lorius and others, 1984). Both cores have high aluminium concentrations in this interval reducing to very low concentrations towards the end of the transition to the Holocene. A similar sharp change from high to very low concentration is also observed for MSA. Very low concentrations of other species are also observed in this interval in the transition period. By assuming that these changes in the two cores are contemporaneous, the age scale from the Dome C core (Lorius and others, 1984) can be applied to the Law Dome core. An age of 13 ka B.p. is assigned to the very clean interval near the end of the transition. Other, less obvious, events in the chemical and isotope records distinguish intervals corresponding to ages of approximately 7.5, 15.5, and 26 ka B.P. Ages for intermediate intervals are derived by interpolation and reference to a modelled age-depth relation. The records from each of the cores for MSA and the continental fraction, represented by aluminium, show similar features at the Law Dome site as at Dome C. But the records for the marine fraction show distinct differences. On Law Dome there is a clear trend of decreasing concentration with depth, consistent with the ice at greater depth having an origin at higher elevation further inland on the ice cap. Very low concentrations occur in the lower part of the core, which includes the interval corresponding to the LGM. By way of contrast, at Dome C the concentration of sodium in the interval corresponding to the Holocene is low, but relatively higher in the LGM interval. The concentrations during the LGM, of both the marine and continental fractions, are lower in Law Dome by a factor generally between 1 and 2 than those at Dome C as a result of dilution caused by the higher precipitation and snow accumulation rates near the coast. For interpretation of the records, the concentrations in the Dome C core are assumed to indicate changes in the global background atmospheric loading and atmospheric circulation. On Law Dome, the general trend of decreasing concentra- tion with depth for the marine fraction is modulated by variations in the background atmospheric loading, and the effect of variations in past ice sheet and sea ice extent and thus distance to the source. At about 11 ka B.P., sodium and magnesium concentrations increase sharply to about three times the background level, and are maintained till about 9.5 ka B.P. This event is not apparent in the Dome C record. During the period 6–8 ka B P., sodium and magnesium concentrations are higher by a factor between 1.5 and 2 in conjunction with colder (more negative) values of the oxygen isotope ratio. There is some evidence of similar variations in the Dome C record. This suggests two separate scenarios. For the period 9.5–11 ka B P., one or more of the following events probably occurred: a change in the seasonal pattern of variation in sea ice extent and distribution; lesser sea ice extent; more open water closer to the coast; increased storminess in the coastal region, each of which could lead to an increased supply of material with marine source (sodium and magnesium) by either more vigorous atmospheric circulation or less distance to the source. Coincidentally, increased storminess is consistent with an increased fraction of open water in the sea ice zone. But there is apparently no change in the concnetration of MSA above background levels during this period. This could provide a constraint on the possible mechanisms causing the observed event. For the more recent period, 6–8 ka B.P., the changes found in both cores probably reflect climatic variation on a broader hemispheric or global scale, involving lower temperatures in at least the high latitudes, probably increased zonal atmospheric circulation, and perhaps changes in the seasonal sea ice distribution and total extent.


2005 ◽  
Vol 24 (6) ◽  
pp. 641-654 ◽  
Author(s):  
Barbara Delmonte ◽  
Jean Robert Petit ◽  
Gerhard Krinner ◽  
Valter Maggi ◽  
Jean Jouzel ◽  
...  

1998 ◽  
Vol 103 (D18) ◽  
pp. 23103-23111 ◽  
Author(s):  
Hiroyuki Enomoto ◽  
Hideaki Motoyama ◽  
Takayuki Shiraiwa ◽  
Takashi Saito ◽  
Takao Kameda ◽  
...  

2004 ◽  
Vol 39 ◽  
pp. 540-544 ◽  
Author(s):  
Barbara T. Smith ◽  
Tas D. Van Ommen ◽  
Mark A. J. Curran

AbstractMethanesulphonic acid (MSA) is an important trace-ion constituent in ice cores, with connections to biological activity and sea-ice distribution. Post-depositional movement of MSA has been documented in firn, and this study investigates movement in solid ice by measuring variations in MSA distribution across several horizontal sections from an ice core after 14.5 years storage. The core used is from below the bubble close-off depth at Dome Summit South, Law Dome, East Antarctica. MSA concentration was studied at 3 and 0.5 cm resolution across the core widths. Its distribution was uniform through the core centres, but the outer 3 cm showed gradients in concentrations down to less than half of the central value at the core edge. This effect is consistent with diffusion to the surrounding air during its 14.5 year storage. The diffusion coefficient is calculated to be 2 ×10–13 m2 s–1, and the implications for the diffusion mechanism are discussed.


2021 ◽  
Author(s):  
Pete D. Akers ◽  
Joël Savarino ◽  
Nicolas Caillon ◽  
Mark Curran ◽  
Tas Van Ommen

<p>Precise Antarctic snow accumulation estimates are needed to understand past and future changes in global sea levels, but standard reconstructions using water isotopes suffer from competing isotopic effects external to accumulation. We present here an alternative accumulation proxy based on the post-depositional photolytic fractionation of nitrogen isotopes (d<sup>15</sup>N) in nitrate. On the high plateau of East Antarctica, sunlight penetrating the uppermost snow layers converts snow-borne nitrate into nitrogen oxide gas that can be lost to the atmosphere. This nitrate loss favors <sup>14</sup>NO<sub>3</sub><sup>-</sup> over <sup>15</sup>NO<sub>3</sub><sup>-</sup>, and thus the d<sup>15</sup>N of nitrate remaining in the snow will steadily increase until the nitrate is eventually buried beneath the reach of light. Because the duration of time until burial is dependent upon the rate of net snow accumulation, sites with lower accumulation rates have a longer burial wait and thus higher d<sup>15</sup>N values. A linear relationship (r<sup>2</sup> = 0.86) between d<sup>15</sup>N and net accumulation<sup>-1</sup> is calculated from over 120 samples representing 105 sites spanning East Antarctica. These sites largely encompass the full range of snow accumulation rates observed in East Antarctica, from 25 kg m-<sup>2</sup> yr<sup>-1</sup> at deep interior sites to >400 kg m-<sup>2</sup> yr<sup>-1</sup> at near coastal sites. We apply this relationship as a transfer function to an Aurora Basin ice core to produce a 700-year record of accumulation changes. Our nitrate-based estimate compares very well with a parallel reconstruction for Aurora Basin that uses volcanic horizons and ice-penetrating radar. Continued improvements to our database may enable precise independent estimates of millennial-scale accumulation changes using deep ice cores such as EPICA Dome C and Beyond EPICA-Oldest Ice.</p>


2021 ◽  
Author(s):  
Margaret Harlan ◽  
Helle Astrid Kjær ◽  
Tessa Vance ◽  
Paul Vallelonga ◽  
Vasileios Gkinis ◽  
...  

<p>The Mount Brown South (MBS) ice core is an approximately 300-meter-long ice core, drilled in 2016-2017 to the south of Mount Brown, Wilhelm II Land, East Antarctica. This location in East Antarctica was chosen as it produces an ice core with well-preserved sub-annual records of both chemistry and isotope concentrations, spanning back over 1000 years. MBS is particularly well suited to represent climate variations of the Indian Ocean sector of Antarctica, and to provide information about regional volcanism in the Southern Indian Ocean region.</p><p>A section of ice spanning the length of the MBS core was melted as part of the autumn 2019 continuous flow analysis (CFA) campaign at the Physics of Ice, Climate, and Earth (PICE) group at the University of Copenhagen. During this campaign, measurements were conducted for chemistry and impurities contained in the ice, in addition to water isotopes. The data measured in Copenhagen include measurements of H<sub>2</sub>O<sub>2,</sub> pH, electrolytic conductivity, and NH<sub>4</sub><sup>+</sup>, Ca<sup>2+</sup>, and Na<sup>+</sup> ions, in addition to insoluble particulate concentrations and size distribution measured using an Abakus laser particle counter.</p><p>Here, we present an overview of the CFA chemistry and impurity data, as well as preliminary investigations into the size distribution of insoluble particles and the presence of volcanic material within the ice. These initial chemistry and particulate size distribution data sets are useful in order to identify sections of the MBS core to subject to further analysis to increase our understanding of volcanic activity in the Southern Indian Ocean region.</p>


Sign in / Sign up

Export Citation Format

Share Document