scholarly journals Imaging spectroscopy: Earth and planetary remote sensing with the USGS Tetracorder and expert systems

Author(s):  
Roger N. Clark ◽  
Gregg A. Swayze ◽  
K. Eric Livo ◽  
Raymond F. Kokaly ◽  
Steve J. Sutley ◽  
...  
2021 ◽  
Vol 13 (2) ◽  
pp. 292
Author(s):  
Megan Seeley ◽  
Gregory P. Asner

As humans continue to alter Earth systems, conservationists look to remote sensing to monitor, inventory, and understand ecosystems and ecosystem processes at large spatial scales. Multispectral remote sensing data are commonly integrated into conservation decision-making frameworks, yet imaging spectroscopy, or hyperspectral remote sensing, is underutilized in conservation. The high spectral resolution of imaging spectrometers captures the chemistry of Earth surfaces, whereas multispectral satellites indirectly represent such surfaces through band ratios. Here, we present case studies wherein imaging spectroscopy was used to inform and improve conservation decision-making and discuss potential future applications. These case studies include a broad array of conservation areas, including forest, dryland, and marine ecosystems, as well as urban applications and methane monitoring. Imaging spectroscopy technology is rapidly developing, especially with regard to satellite-based spectrometers. Improving on and expanding existing applications of imaging spectroscopy to conservation, developing imaging spectroscopy data products for use by other researchers and decision-makers, and pioneering novel uses of imaging spectroscopy will greatly expand the toolset for conservation decision-makers.


2014 ◽  
Vol 369 (1643) ◽  
pp. 20130194 ◽  
Author(s):  
Michael D. Madritch ◽  
Clayton C. Kingdon ◽  
Aditya Singh ◽  
Karen E. Mock ◽  
Richard L. Lindroth ◽  
...  

Fine-scale biodiversity is increasingly recognized as important to ecosystem-level processes. Remote sensing technologies have great potential to estimate both biodiversity and ecosystem function over large spatial scales. Here, we demonstrate the capacity of imaging spectroscopy to discriminate among genotypes of Populus tremuloides (trembling aspen), one of the most genetically diverse and widespread forest species in North America. We combine imaging spectroscopy (AVIRIS) data with genetic, phytochemical, microbial and biogeochemical data to determine how intraspecific plant genetic variation influences below-ground processes at landscape scales. We demonstrate that both canopy chemistry and below-ground processes vary over large spatial scales (continental) according to aspen genotype. Imaging spectrometer data distinguish aspen genotypes through variation in canopy spectral signature. In addition, foliar spectral variation correlates well with variation in canopy chemistry, especially condensed tannins. Variation in aspen canopy chemistry, in turn, is correlated with variation in below-ground processes. Variation in spectra also correlates well with variation in soil traits. These findings indicate that forest tree species can create spatial mosaics of ecosystem functioning across large spatial scales and that these patterns can be quantified via remote sensing techniques. Moreover, they demonstrate the utility of using optical properties as proxies for fine-scale measurements of biodiversity over large spatial scales.


2002 ◽  
Vol 12 ◽  
pp. 96-98
Author(s):  
Pierre Drossart

AbstractThe spectroscopy of giant planets in the infrared range gives access to a remote sensing of many physical parameters. The composition, pressure/temperature structure, and the cloud structure all contribute to the spectrum, in solar reflected light below 3 micrometer as well as thermal emission above, from atmospheric levels ranging from the mesosphere down to the troposphere. Imaging spectroscopy revealing the variability of the atmosphere gives access to spatial and temporal evolution of these parameters, constraining the meteorological evolution of the planets.


1992 ◽  
Vol 18 (4) ◽  
pp. 199-208 ◽  
Author(s):  
J.F.R. Gower ◽  
G.A. Borstad ◽  
C.D. Anger ◽  
H.R. Edel

2018 ◽  
Vol 40 (3) ◽  
pp. 657-687 ◽  
Author(s):  
Luis Guanter ◽  
Maximilian Brell ◽  
Jonathan C.-W. Chan ◽  
Claudia Giardino ◽  
Jose Gomez-Dans ◽  
...  

Eos ◽  
2012 ◽  
Vol 93 (50) ◽  
pp. 525-525 ◽  
Author(s):  
Ira Leifer ◽  
David M. Tratt ◽  
Vincent J. Realmuto ◽  
Konstantin Gerilowski ◽  
John P. Burrows

Author(s):  
J. Hanuš ◽  
T. Fabiánek ◽  
L. Fajmon

Ecosystems, their services, structures and functions are affected by complex environmental processes, which are both natural and human-induced and globally changing. In order to understand how ecosystems behave in globally changing environment, it is important to monitor the current status of ecosystems and their structural and functional changes in time and space. An essential tool allowing monitoring of ecosystems is remote sensing (RS). Many ecosystems variables are being translated into a spectral response recorded by RS instruments. It is however important to understand the complexity and synergies of the key ecosystem variables influencing the reflected signal. This can be achieved by analysing high resolution RS data from multiple sources acquired simultaneously from the same platform. Such a system has been recently built at CzechGlobe - Global Change Research Institute (The Czech Academy of Sciences). <br><br> CzechGlobe has been significantly extending its research infrastructure in the last years, which allows advanced monitoring of ecosystem changes at hierarchical levels spanning from molecules to entire ecosystems. One of the CzechGlobe components is a laboratory of imaging spectroscopy. The laboratory is now operating a new platform for advanced remote sensing observations called FLIS (Flying Laboratory of Imaging Spectroscopy). FLIS consists of an airborne carrier equipped with passive RS systems. The core instrument of FLIS is a hyperspectral imaging system provided by Itres Ltd. The hyperspectral system consists of three spectroradiometers (CASI 1500, SASI 600 and TASI 600) that cover the reflective spectral range from 380 to 2450 nm, as well as the thermal range from 8 to 11.5 μm. The airborne platform is prepared for mounting of full-waveform laser scanner Riegl-Q780 as well, however a laser scanner is not a permanent part of FLIS. In 2014 the installation of the hyperspectral scanners was completed and the first flights were carried out with all sensors. <br><br> The new hyperspectral imaging system required adaptations in the data pre-processing chain. The established pre-processing chain (radiometric, atmospheric and geometric corrections), which was tailored mainly to the AISA Eagle instrument operated at CzechGlobe since 2004, has been now modified to fit the new system and users needs. Continuous development of the processing chain is now focused mainly on establishing pre-processing of thermal data including emissivity estimation and also on joint processing of hyperspectral and laser scanning data.


Sign in / Sign up

Export Citation Format

Share Document