scholarly journals Increased tropical Atlantic wind shear in model projections of global warming

2007 ◽  
Vol 34 (8) ◽  
Author(s):  
Gabriel A. Vecchi ◽  
Brian J. Soden
2013 ◽  
Vol 26 (22) ◽  
pp. 8995-9005 ◽  
Author(s):  
Ruifang Wang ◽  
Liguang Wu

Abstract Whereas some studies linked the enhanced tropical cyclone (TC) formation in the North Atlantic basin to the ongoing global warming, other studies attributed it to the warm phase of the Atlantic multidecadal oscillation (AMO). Using the National Oceanic and Atmospheric Administration (NOAA) Earth System Research Laboratory (ESRL) Twentieth Century Reanalysis (20CR) dataset, the present study reveals the distinctive spatial patterns associated with the influences of the AMO and global warming on TC formation in the North Atlantic basin. Two leading empirical orthogonal function (EOF) patterns are identified in the climate change of TC formation on time scales longer than interannual. The first pattern is associated with the AMO and its spatial pattern shows the basin-scale enhancement of TC formation during the AMO positive phase. The second pattern is associated with global warming, showing enhanced TC formation in the east tropical Atlantic (5°–20°N, 15°–40°W) and reduced TC formation from the southeast coast of the United States extending southward to the Caribbean Sea. In the warm AMO phase, the basinwide decrease in vertical wind shear and increases in midlevel relative humidity and maximum potential intensity (MPI) favor the basinwide enhancement of TC formation. Global warming suppresses TC formation from the southeast coast of the United States extending southward to the Caribbean Sea through enhancing vertical wind shear and reducing midlevel relative humidity and MPI. The enhanced TC formation in the east tropical Atlantic is due mainly to a local increase in MPI or sea surface temperature (SST), leading to a close relationship between the Atlantic SST and TC activity over the past decades.


2019 ◽  
Vol 11 (21) ◽  
pp. 6082 ◽  
Author(s):  
Judith Rosenow ◽  
Hartmut Fricke

Contrails are one of the driving contributors to global warming, induced by aviation. The quantification of the impact of contrails on global warming is nontrivial and requires further in-depth investigation. In detail, condensation trails might even change the algebraic sign between a cooling and a warming effect in an order of magnitude, which is comparable to the impact of aviation-emitted carbon dioxides and nitrogen oxides. This implies the necessity to granularly consider the environmental impact of condensation trails in single-trajectory optimization tools. The intent of this study is the elaboration of all significant factors influencing on the net effect of single condensation trails. Possible simplifications will be proposed for a consideration in single-trajectory optimization tools. Finally, the effects of the most important impact factors, such as latitude, time of the year, and time of the day, wind shear, and atmospheric turbulence as well as their consideration in a multi-criteria trajectory optimization tool are exemplified. The results can be used for an arbitrary trajectory optimization tool with environmental optimization intents.


2016 ◽  
Vol 6 (1) ◽  
Author(s):  
Fan Jia ◽  
Lixin Wu ◽  
Bolan Gan ◽  
Wenju Cai

2014 ◽  
Vol 27 (22) ◽  
pp. 8342-8356 ◽  
Author(s):  
Xiaojie Zhu ◽  
Li Xu ◽  
Cristiana Stan

Abstract The vertical wind shear over the tropical Atlantic Ocean and its relationship with ENSO are analyzed in the superparameterized Community Climate System Model, version 4 (SP-CCSM4) and in the conventional CCSM4. The climatology of vertical wind shear over the tropical Atlantic and the ENSO–shear relationship are well simulated in the control runs of SP-CCSM4 and CCSM4. However, because of different representations of cloud processes, in a warmer climate such as the representative concentration pathway 8.5 (RCP8.5) scenario, SP-CCSM4 projects increased mean westerlies at 200 hPa during July through October (JASO), whereas CCSM4 projects decreased mean westerlies at 200 hPa over the equatorial Atlantic. The different changes in the upper-level wind further contribute to different projection of JASO mean vertical wind shear over the equatorial Atlantic. In the RCP8.5 scenario, when excluding the linear trend, projection of the ENSO–shear relationships by SP-CCSM4 retains similar features as in the observed current climate, whereas the ENSO–shear relationship projected by CCSM4 indicates an increase in the vertical wind shear dominating the tropical Atlantic during El Niño events. The difference in projection of ENSO–shear relationship is, to a certain extent, related to the different response of the tropical Atlantic SST to ENSO. Analysis of the climate change projection of Walker circulation, cloud cover, and convective activity illustrates that superparameterization simulates a stronger suppression of African convection than the conventional parameterization of moist processes. The weak convective activity diminishes the divergent wind associated with the vertical motion, which contributes to increased westerlies projected in SP-CCSM4.


Author(s):  
Catrin Ciemer ◽  
Ricarda Winkelmann ◽  
Jürgen Kurths ◽  
Niklas Boers

AbstractThe Atlantic Meridional Overturning Circulation (AMOC) and the Amazon rainforest are potential tipping elements of the Earth system, i.e., they may respond with abrupt and potentially irreversible state transitions to a gradual change in forcing once a critical forcing threshold is crossed. With progressing global warming, it becomes more likely that the Amazon will reach such a critical threshold, due to projected reductions of precipitation in tropical South America, which would in turn trigger vegetation transitions from tropical forest to savanna. At the same time, global warming has likely already contributed to a weakening of the AMOC, which induces changes in tropical Atlantic sea-surface temperature (SST) patterns that in turn affect rainfall patterns in the Amazon. A large-scale decline or even dieback of the Amazon rainforest would imply the loss of the largest terrestrial carbon sink, and thereby have drastic consequences for the global climate. Here, we assess the direct impact of greenhouse gas-driven warming of the tropical Atlantic ocean on Amazon rainfall. In addition, we estimate the effect of an AMOC slowdown or collapse, e. g. induced by freshwater flux into the North Atlantic due to melting of the Greenland Ice Sheet, on Amazon rainfall. In order to provide a clear explanation of the underlying dynamics, we use a simple, but robust mathematical approach (based on the classical Stommel two-box model), ensuring consistency with a comprehensive general circulation model (HadGEM3). We find that these two processes, both caused by global warming, are likely to have competing impacts on the rainfall sum in the Amazon, and hence on the stability of the Amazon rainforest. A future AMOC decline may thus counteract direct global-warming-induced rainfall reductions. Tipping of the AMOC from the strong to the weak mode may therefore have a stabilizing effect on the Amazon rainforest.


2006 ◽  
Vol 19 (12) ◽  
pp. 2969-2983 ◽  
Author(s):  
Anantha R. Aiyyer ◽  
Chris Thorncroft

Abstract The spatiotemporal variability of the 200–850-hPa vertical wind shear over the tropical Atlantic is examined for a period of 46 yr. This work extends and updates past studies by considering a longer data record as well as a tropospheric-deep measure of vertical wind shear. Composite fields are constructed to illustrate the spatial pattern of the large-scale circulation associated with the mean and extreme cases of vertical shear within the tropical Atlantic. The contemporaneous relationship of vertical shear with El Niño–Southern Oscillation (ENSO) and Sahel precipitation are also examined. While the ENSO–shear correlation appears to have slightly strengthened during the past decade, the Sahel–shear correlation has become significantly degraded. A combined empirical orthogonal function (EOF) analysis of the zonal and meridional components of the vertical shear reveals interannual and multidecadal modes. The leading EOF exhibits mainly interannual variability and is highly correlated with ENSO. The second EOF is associated with a multidecadal temporal evolution and is correlated with Sahel precipitation. Both EOFs correlate at the same level with tropical cyclones in the main development region of the tropical Atlantic.


2020 ◽  
Author(s):  
Wonsun Park ◽  
Mojib Latif ◽  
Arielle Stela Imbol Nkwinkwa Njouodo

<p>Mean state and internal variability in the tropics are crucially linked to air-sea interactions. State-of-the-art climate models exhibit long-standing problems not only in simulating tropical mean climate, such as too cold sea surface temperature (SST) over the central tropical Pacific and too warm SST over the eastern tropical Pacific and Atlantic, but also with respect to seasonal and longer variability. These biases question the credibility of future climate projections with the models, and it has not been shown to date whether or how such SST biases affect the projections. Here we focus on the tropical Atlantic (TA) and investigate how the mean state influences climate projections over the region.</p><p>We use two versions of the Kiel Climate Model (KCM) in global warming simulations, in which only atmosphere model resolution differs: one version carries ECHAM5 with a horizontal resolution of T42 (~2.8°) and 31 vertical levels, and the other ECHAM5 with a horizontal resolution of T255 (~0.47°) and 62 levels. Although only the atmospheric resolutions differ, the two KCM versions exhibit very different mean states over the tropical TA, with the higher-resolution version, among others, featuring much reduced warm SST bias over the eastern basin.</p><p>The response to increasing atmospheric carbon dioxide levels is found to be sensitive to the mean state. The model employing high atmospheric resolution and featuring a small SST bias projects an eastward-amplified SST warming over the TA, consistent with the pattern of interannual SST variability simulated under present-day conditions and in line with the observed SST trends since the mid-20<sup>th</sup> century. The model employing low-resolution and exhibiting a large SST bias projects more uniform SST change. Atmospheric changes also vastly differ among the two model versions.</p><p>Analysis of models participating in the Coupled Model Intercomparison Project Phase 5 (CMIP5) support the KCM’s results: models with small SST bias project stronger warming over the eastern TA, while models with large SST bias either project uniform warming across the equator or largest warming in the west. This study suggests that reducing model bias may enhance global warming projections over the TA sector.</p>


2012 ◽  
Vol 140 (7) ◽  
pp. 2198-2214 ◽  
Author(s):  
Michael J. Ventrice ◽  
Christopher D. Thorncroft ◽  
Carl J. Schreck

Abstract High-amplitude convectively coupled equatorial atmospheric Kelvin waves (CCKWs) are explored over the tropical Atlantic during the boreal summer (1989–2009). Focus is given to the atmospheric environmental conditions that are important for tropical cyclogenesis. CCKWs are characterized by deep westerly vertical wind shear to the east of its convectively active phase and easterly vertical wind shear to the west of it. This dynamical signature increases vertical wind shear over the western tropical Atlantic ahead of the convectively active phase, and reduces vertical wind shear after its passage. The opposite is true over the eastern tropical Atlantic where the climatological vertical wind shear is easterly. Positive total column water vapor (TCWV) anomalies progress eastward with the convectively active phase of the CCKW, whereas negative TCWV anomalies progress eastward with the convectively suppressed phase. During the passage of the convectively active phase of the CCKW, a zonally oriented strip of low-level cyclonic relative vorticity is generated over the tropical Atlantic. Two days later, this strip becomes more wavelike and moves back toward the west. This signature resembles a train of westward-moving easterly waves and suggests CCKWs may influence such events. Strong CCKWs over the tropical Atlantic tend to occur during the decay of the active convection associated with the Madden–Julian oscillation over the Pacific. This relationship could be used to provide better long-range forecasts of tropical convective patterns and Atlantic tropical cyclogenesis.


2016 ◽  
Vol 73 (10) ◽  
pp. 3803-3820 ◽  
Author(s):  
Robert E. Tuleya ◽  
Morris Bender ◽  
Thomas R. Knutson ◽  
Joseph J. Sirutis ◽  
Biju Thomas ◽  
...  

Abstract The GFDL hurricane modeling system, initiated in the 1970s, has progressed from a research tool to an operational system over four decades. This system is still in use today in research and operations, and its evolution will be briefly described. This study used an idealized version of the 2014 GFDL model to test its sensitivity across a wide range of three environmental factors that are often identified as key factors in tropical cyclone (TC) evolution: SST, atmospheric stability (upper-air thermal anomalies), and vertical wind shear (westerly through easterly). A wide range of minimum central pressure intensities resulted (905–980 hPa). The results confirm that a scenario (e.g., global warming) in which the upper troposphere warms relative to the surface will have less TC intensification than one with a uniform warming with height. The TC rainfall is also investigated for the SST–stability parameter space. Rainfall increases for combinations of SST increase and increasing stability similar to global warming scenarios, consistent with climate change TC downscaling studies with the GFDL model. The forecast system’s sensitivity to vertical shear was also investigated. The idealized model simulations showed weak disturbances dissipating under strong easterly and westerly shear of 10 m s−1. A small bias for greater intensity under easterly sheared versus westerly sheared environments was found at lower values of SST. The impact of vertical shear on intensity was different when a strong vortex was used in the simulations. In this case, none of the initial disturbances weakened, and most intensified to some extent.


Sign in / Sign up

Export Citation Format

Share Document