Heat stress intensification in the Mediterranean climate change hotspot

2007 ◽  
Vol 34 (11) ◽  
Author(s):  
Noah S. Diffenbaugh ◽  
Jeremy S. Pal ◽  
Filippo Giorgi ◽  
Xuejie Gao
2021 ◽  
Vol 13 (16) ◽  
pp. 9107
Author(s):  
George Katavoutas ◽  
Dimitra Founda ◽  
Gianna Kitsara ◽  
Christos Giannakopoulos

The Mediterranean area is one of the most visited tourist destinations of the world, but it has also been recognized as one of the most vulnerable to climate change areas worldwide with respect to increased thermal risk. The study focuses on a top worldwide tourist destination of the Mediterranean, Santorini Island in Greece, and aims to assess the past, present and future thermal environment in the island based on the advanced Universal Thermal Climate Index (UTCI). The study utilizes historical observations capturing past (late 19th to early 20th century) and more recent (1982–2019) time periods, while future projections are realized based on four regional climate models (RCMs) under the weak mitigation scenario (RCP4.5) and the non-mitigation scenario with high emissions (RCP8.5). The frequency of cold stress conditions at midday decreases during winter and early spring months by up to 19.8% (January) in the recent period compared to the historical one, while heat stress conditions increase in summer by up to 22.4% (August). Future projections suggest progressive shifts of the UTCI towards higher values in the future and an increase in the exposure time under heat stress depending on the RCM and adopted scenario. The increase in moderate and strong heat stress conditions is mainly expected during the summer months (June, July, August); nevertheless, a noticeable increase is also foreseen in September and May. The highest occurrences of favorable (no thermal stress) conditions are also projected to shift by one month, from June to May and from September to October, in the future.


2021 ◽  
Author(s):  
Josep Cos ◽  
Francisco Doblas-Reyes ◽  
Martin Jury ◽  
Raül Marcos ◽  
Pièrre-Antoine Bretonnière ◽  
...  

2020 ◽  
Author(s):  
Chunyu Dong ◽  
Glen MacDonald ◽  
Gregory Okin ◽  
Thomas Gillespie

<p>California's climate is projected to have more droughts and heatwaves in the future. A combination of heat and drought stress may significantly affect vegetation health of the Mediterranean ecosystems than drought stress alone. Based on multi-source remote sensing and surface data, we investigated the impacts of drought and climate change on the Mediterranean-climate vegetation of California at different scales, i.e. the entire state, southern California, and Los Angeles urban area. For entire California, we find that a hydroclimatic dipole regulated by El Niño-Southern Oscillation (ENSO) and Pacific Decadal Oscillation (PDO) intensifies the aridity in southern California compared to the north. At a regional scale of southern California, we utilized a bootstrapping regression model to analyze the geographical influences on the relationships between vegetation and drought. Results suggest a warmer climate can significantly increase vegetation sensitivity to drought. In addition, soil texture and elevation seem to also play an important role in adjusting the wildland vegetation susceptibility to drought. In the Los Angeles urban area, we find socioeconomic conditions is the decisive influence in intensifying or mitigating the vegetation response to water-scarce seasons and years. The projected hotter climate in the 21<sup>st </sup>century may reshape the future landscapes of the coupled human-natural system in California by exacerbating drought severity and duration, differentiating mortality, and increasing wildfires.</p>


2016 ◽  
Vol 97 (7) ◽  
pp. 1187-1208 ◽  
Author(s):  
P. M. Ruti ◽  
S. Somot ◽  
F. Giorgi ◽  
C. Dubois ◽  
E. Flaounas ◽  
...  

Abstract The Mediterranean is expected to be one of the most prominent and vulnerable climate change “hotspots” of the twenty-first century, and the physical mechanisms underlying this finding are still not clear. Furthermore, complex interactions and feedbacks involving ocean–atmosphere–land–biogeochemical processes play a prominent role in modulating the climate and environment of the Mediterranean region on a range of spatial and temporal scales. Therefore, it is critical to provide robust climate change information for use in vulnerability–impact–adaptation assessment studies considering the Mediterranean as a fully coupled environmental system. The Mediterranean Coordinated Regional Downscaling Experiment (Med-CORDEX) initiative aims at coordinating the Mediterranean climate modeling community toward the development of fully coupled regional climate simulations, improving all relevant components of the system from atmosphere and ocean dynamics to land surface, hydrology, and biogeochemical processes. The primary goals of Med-CORDEX are to improve understanding of past climate variability and trends and to provide more accurate and reliable future projections, assessing in a quantitative and robust way the added value of using high-resolution and coupled regional climate models. The coordination activities and the scientific outcomes of Med-CORDEX can produce an important framework to foster the development of regional Earth system models in several key regions worldwide.


Author(s):  
U. Ulbrich ◽  
W. May ◽  
L. Li ◽  
P. Lionello ◽  
J.G. Pinto ◽  
...  

2017 ◽  
Vol 61 (8) ◽  
pp. 1371-1379 ◽  
Author(s):  
Rahma Bellagi ◽  
Bruno Martin ◽  
Chantal Chassaing ◽  
Taha Najar ◽  
Dominique Pomiès

2012 ◽  
Vol 9 (8) ◽  
pp. 9193-9238 ◽  
Author(s):  
C. Schneider ◽  
C. L. R. Laizé ◽  
M. C. Acreman ◽  
M. Flörke

Abstract. Worldwide, flow regimes are being modified by various anthropogenic impacts and climate change induces an additional risk. Rising evapotranspiration rates, declining snow cover and changing precipitation patterns will interact differently at different locations. Consequently, in distinct climate zones, unequal consequences can be expected in matters of water stress, flood risk, water quality, and food security. In particular, river ecosystems and their vital ecosystem services will be compromised as their species richness and composition have evolved over long time under natural flow conditions. This study aims at evaluating the exclusive impacts of climate change on river flow regimes in Europe. Various flow characteristics are taken into consideration and diverse dynamics are identified for each distinct climate zone in Europe. In order to simulate natural and modified flow regimes, the global hydrology model WaterGAP3 is applied. All calculations for current and future conditions (2050s) are carried out on a 5' × 5' European grid. To address uncertainty, climate forcing data of three different global climate models are used to drive WaterGAP3. Finally, the hydrological alterations of different flow characteristics are quantified by the Indicators of Hydrological Alteration approach. Results of our analysis indicate that on European scale, climate change can be expected to modify flow regimes significantly. This is especially the case in the Mediterranean climate zone (due to drier conditions with reduced precipitation across the year) and in the continental climate zone (due to reduced snowmelt and drier summers). Regarding single flow characteristics, strongest impacts on timing were found for the boreal climate zone. This applies for both, high and low flows. While low flow magnitudes are likely to be stronger influenced in the Mediterranean climate, high flow magnitudes will be mainly altered in snow climates with warmer summers. At the end of this study, typical future flow regimes under climate change are illustrated for each climate zone including a validation on robustness.


Author(s):  
Karen J. Esler ◽  
Anna L. Jacobsen ◽  
R. Brandon Pratt

The world’s mediterranean-type climate regions (including areas within the Mediterranean, South Africa, Australia, California, and Chile) have long been of interest to biologists by virtue of their extraordinary biodiversity and the appearance of evolutionary convergence between these disparate regions. Comparisons between mediterranean-type climate regions have provided important insights into questions at the cutting edge of ecological, ecophysiological and evolutionary research. These regions, dominated by evergreen shrubland communities, contain many rare and endemic species. Their mild climate makes them appealing places to live and visit and this has resulted in numerous threats to the species and communities that occupy them. Threats include a wide range of factors such as habitat loss due to development and agriculture, disturbance, invasive species, and climate change. As a result, they continue to attract far more attention than their limited geographic area might suggest. This book provides a concise but comprehensive introduction to mediterranean-type ecosystems. As with other books in the Biology of Habitats Series, the emphasis in this book is on the organisms that dominate these regions although their management, conservation, and restoration are also considered.


Molecules ◽  
2021 ◽  
Vol 26 (11) ◽  
pp. 3313
Author(s):  
Juan Luis Aguirre ◽  
María Teresa Martín ◽  
Sergio González ◽  
Manuel Peinado

The effects of two types of biochar on corn production in the Mediterranean climate during the growing season were analyzed. The two types of biochar were obtained from pyrolysis of Pinus pinaster. B1 was fully pyrolyzed with 55.90% organic carbon, and B2 was medium pyrolyzed with 23.50% organic carbon. B1 and B2 were supplemented in the soil of 20 plots (1 m2) at a dose of 4 kg/m2. C1 and C2 (10 plots each) served as control plots. The plots were automatically irrigated and fertilizer was not applied. The B1-supplemented plots exhibited a significant 84.58% increase in dry corn production per square meter and a 93.16% increase in corn wet weight (p << 0.001). Corn production was no different between B2-supplemented, C1, and C2 plots (p > 0.01). The weight of cobs from B1-supplemented plots was 62.3%, which was significantly higher than that of cobs from C1 and C2 plots (p < 0.01). The grain weight increased significantly by 23% in B1-supplemented plots (p < 0.01) and there were no differences between B2-supplemented, C1, and C2 plots. At the end of the treatment, the soil of the B1-supplemented plots exhibited increased levels of sulfate, nitrate, magnesium, conductivity, and saturation percentage. Based on these results, the economic sustainability of this application in agriculture was studied at a standard price of €190 per ton of biochar. Amortization of this investment can be achieved in 5.52 years according to this cost. Considering the fertilizer cost savings of 50% and the water cost savings of 25%, the amortization can be achieved in 4.15 years. If the price of biochar could be reduced through the CO2 emission market at €30 per ton of non-emitted CO2, the amortization can be achieved in 2.80 years. Biochar markedly improves corn production in the Mediterranean climate. However, the amortization time must be further reduced, and enhanced production must be guaranteed over the years with long term field trials so that the product is marketable or other high value-added crops must be identified.


2021 ◽  
Author(s):  
Alba de la Vara ◽  
William Cabos ◽  
Dmitry V. Sein ◽  
Claas Teichmann ◽  
Daniela Jacob

AbstractIn this work we use a regional atmosphere–ocean coupled model (RAOCM) and its stand-alone atmospheric component to gain insight into the impact of atmosphere–ocean coupling on the climate change signal over the Iberian Peninsula (IP). The IP climate is influenced by both the Atlantic Ocean and the Mediterranean sea. Complex interactions with the orography take place there and high-resolution models are required to realistically reproduce its current and future climate. We find that under the RCP8.5 scenario, the generalized 2-m air temperature (T2M) increase by the end of the twenty-first century (2070–2099) in the atmospheric-only simulation is tempered by the coupling. The impact of coupling is specially seen in summer, when the warming is stronger. Precipitation shows regionally-dependent changes in winter, whilst a drier climate is found in summer. The coupling generally reduces the magnitude of the changes. Differences in T2M and precipitation between the coupled and uncoupled simulations are caused by changes in the Atlantic large-scale circulation and in the Mediterranean Sea. Additionally, the differences in projected changes of T2M and precipitation with the RAOCM under the RCP8.5 and RCP4.5 scenarios are tackled. Results show that in winter and summer T2M increases less and precipitation changes are of a smaller magnitude with the RCP4.5. Whilst in summer changes present a similar regional distribution in both runs, in winter there are some differences in the NW of the IP due to differences in the North Atlantic circulation. The differences in the climate change signal from the RAOCM and the driving Global Coupled Model show that regionalization has an effect in terms of higher resolution over the land and ocean.


Sign in / Sign up

Export Citation Format

Share Document