scholarly journals ReefTemp: An interactive monitoring system for coral bleaching using high-resolution SST and improved stress predictors

2008 ◽  
Vol 35 (5) ◽  
Author(s):  
Jeffrey A. Maynard ◽  
Peter J. Turner ◽  
Kenneth R. N. Anthony ◽  
Andrew H. Baird ◽  
Ray Berkelmans ◽  
...  
Sensors ◽  
2020 ◽  
Vol 20 (2) ◽  
pp. 336
Author(s):  
Feiyang Zhang ◽  
Guangxing Wang ◽  
Yueming Hu ◽  
Liancheng Chen ◽  
A-xing Zhu

Quality monitoring is important for farmland protection. Here, high-resolution remote sensing data obtained by unmanned aerial vehicles (UAVs) and long-term ground sensing data, obtained by wireless sensor networks (WSNs), are uniquely suited for assessing spatial and temporal changes in farmland quality. However, existing UAV-WSN systems are unable to fully integrate the data obtained from these two monitoring systems. This work addresses this problem by designing an improved UAV-WSN monitoring system that can collect both high-resolution UAV images and long-term WSN data during a single-flight mission. This is facilitated by a newly proposed data transmission optimization routing protocol (DTORP) that selects the communication node within a cluster of the WSN to maximize the quantity of data that can be efficiently transmitted, additionally combining individual scheduling algorithms and routing algorithms appropriate for three different distance scales to reduce the energy consumption incurred during data transmission between the nodes in a cluster. The performance of the proposed system is evaluated based on Monte Carlo simulations by comparisons with that obtained by a conventional system using the low-energy adaptive clustering hierarchy (LEACH) protocol. The results demonstrate that the proposed system provides a greater total volume of transmitted data, greater energy utilization efficiency, and a larger maximum revisit period than the conventional system. This implies that the proposed UAV-WSN monitoring system offers better overall performance and enhanced potential for conducting long-term farmland quality data collection over large areas in comparison to existing systems.


2013 ◽  
Vol 753-755 ◽  
pp. 2369-2373
Author(s):  
Yu Xuan Hu ◽  
Yi Hu ◽  
Shu Ming Ye ◽  
Xiao Xiang Zheng

As a major indicator of Obstructive Sleep Apnea Syndrome (OSAS) in clinical diagnosis, the monitoring of sleep apnea plays an important role in medical treatments of modern society. This paper proposes a portable sleep apnea monitoring system, which is of high-precision and low-power consumption, and capable of performing the long-term monitoring of OSAS patients multiple physiological parameters in clinical treatments. In the system, the AC modulated detection is adopted, and low amplification ratios are utilized in forestage and a high-resolution AD converter is designed in post-stages. Thus, it is able to acquire, analyze, and process physiological signals in real-time. In addition, ultralow-power chips are used in control system to save the power consumption. The experimental results show that our monitoring system has the strengths of high stability, low-power consumption (peak current90mA), and strong anti-interference ability, which demonstrates the potential in practical applications.


PLoS ONE ◽  
2017 ◽  
Vol 12 (4) ◽  
pp. e0175490 ◽  
Author(s):  
Simon D. Donner ◽  
Gregory J. M. Rickbeil ◽  
Scott F. Heron

Sign in / Sign up

Export Citation Format

Share Document