scholarly journals Estimating uplift rate histories from river profiles using African examples

Author(s):  
Gareth G. Roberts ◽  
Nicky White
Keyword(s):  
2017 ◽  
Vol 5 (1) ◽  
pp. 161-186 ◽  
Author(s):  
Sean F. Gallen ◽  
Karl W. Wegmann

Abstract. Topography is a reflection of the tectonic and geodynamic processes that act to uplift the Earth's surface and the erosional processes that work to return it to base level. Numerous studies have shown that topography is a sensitive recorder of tectonic signals. A quasi-physical understanding of the relationship between river incision and rock uplift has made the analysis of fluvial topography a popular technique for deciphering relative, and some argue absolute, histories of rock uplift. Here we present results from a study of the fluvial topography from south-central Crete, demonstrating that river longitudinal profiles indeed record the relative history of uplift, but several other processes make it difficult to recover quantitative uplift histories. Prior research demonstrates that the south-central coastline of Crete is bound by a large ( ∼  100 km long) E–W striking composite normal fault system. Marine terraces reveal that it is uplifting between 0.1 and 1.0 mm yr−1. These studies suggest that two normal fault systems, the offshore Ptolemy and onshore South-Central Crete faults, linked together in the recent geologic past (ca. 0.4–1 My BP). Fault mechanics predict that when adjacent faults link into a single fault the uplift rate in footwalls of the linkage zone will increase rapidly. We use this natural experiment to assess the response of river profiles to a temporal jump in uplift rate and to assess the applicability of the stream power incision model to this setting. Using river profile analysis we show that rivers in south-central Crete record the relative uplift history of fault growth and linkage as theory predicts that they should. Calibration of the commonly used stream power incision model shows that the slope exponent, n, is  ∼  0.5, contrary to most studies that find n  ≥  1. Analysis of fluvial knickpoints shows that migration distances are not proportional to upstream contributing drainage area, as predicted by the stream power incision model. Maps of the transformed stream distance variable, χ, indicate that drainage basin instability, drainage divide migration, and river capture events complicate river profile analysis in south-central Crete. Waterfalls are observed in southern Crete and appear to operate under less efficient and different incision mechanics than assumed by the stream power incision model. Drainage area exchange and waterfall formation are argued to obscure linkages between empirically derived metrics and quasi-physical descriptions of river incision, making it difficult to quantitatively interpret rock uplift histories from river profiles in this setting. Karst hydrology, break down of assumed drainage area discharge scaling, and chemical weathering might also contribute to the failure of the stream power incision model to adequately predict the behavior of the fluvial system in south-central Crete.


2021 ◽  
Author(s):  
Conor O'Malley ◽  
Nicky White ◽  
Gareth Roberts ◽  
Simon Stephenson

<p>A range of geological evidence documents the growth of African topography as a result of sub-plate support throughout Cenozoic times. Recent studies used inverse modeling of drainage networks governed by the linear stream power law to quantify the spatio-temporal history of uplift and erosion across the continent. Here, we test predictions of this uplift rate history by applying it as tectonic forcing to naturalistic landscape evolution simulations. These simulations parameterise dynamic drainage reorganisation, track sedimentary flux, and permit variable erodibility, none of which are feasible in inverse models. Modelled topography, river profiles, drainage planforms and sedimentary flux patterns broadly match observations. We test the sensitivity of forward model prediction to variations in erodilibity by employing spatio-temporally variable precipitation rate. Forward model predictions are relatively robust to even large excursions, suggesting landscapes contain internal feedbacks which modulate these effects and permit close recovery of the geomorphic record of uplift. Wavelet power spectral analysis reveals observed African river profiles are self-similar at wavelengths >~ 100 km, meaning longest-wavelength features have the highest amplitudes. At shorter wavelengths, spectral slopes increase, implying sharper features are generated only at wavelengths <~ 100km. Synthetic fluvial profiles recovered from simple landscape evolution models driven by uplift forcing obtained from inverse modeling of observed river profiles are self-similar across all wavelengths. This self-similarity solely reflects the tectonic forcing applied. When noise in erodibility or uplift rate forcing is added to forward simulations, power spectra of resulting fluvial profiles more closely approximate spectra of observed profiles. Thus sharp signals in observed river profiles arise from factors which do not correlate between neighbouring tributaries, e.g. lithological constrasts, self-forming hydraulic shocks, or human alteration. The recoverability of regional uplift from observed fluvial profiles is made possible by the fact that most topographic power is generated by regional uplift and resides at long-wavelengths.</p>


Author(s):  
S. Carretier ◽  
B. Nivière ◽  
M. Giamboni ◽  
T. Winter
Keyword(s):  

2021 ◽  
Author(s):  
Yizhou Wang ◽  
Liran Goren ◽  
Dewen Zheng ◽  
Huiping Zhang

Abstract. The long profile of rivers is widely considered as a recorded of tectonic uplift rate. Knickpoints form in response to rate changes and faster rates produce steeper channel segments. However, when the exponent relating fluvial incision to river slope, n, is not unity, the links between tectonic rates and channel profile are complicated by channel dynamics that consume and form river segments. Here, we explore non-linear cases leading to channel segment consumption and develop a Lagrangian analytic model for knickpoint migration. We derive a criterion for knickpoint preservation and merging, and develop a forward analytic model that resolves knickpoint and long profile evolution before and after knickpoint merging. We further propose a linear inverse scheme to infer tectonic history from river profiles when all knickpoints are preserved. Our description provides a new framework to explore the links between tectonic uplift rates and river profile evolution when n is not unity.


Geology ◽  
2008 ◽  
Vol 36 (7) ◽  
pp. 535 ◽  
Author(s):  
Patience A. Cowie ◽  
Alexander C. Whittaker ◽  
Mikaël Attal ◽  
Gerald Roberts ◽  
Greg E. Tucker ◽  
...  

2021 ◽  
Author(s):  
Matthieu Ribot ◽  
Yann Klinger ◽  
Edwige Pons-Branchu ◽  
Marthe Lefevre ◽  
Sigurjón Jónsson

<p>Initially described in the late 50’s, the Dead Sea Fault system connects at its southern end to the Red Sea extensive system, through a succession of left-stepping faults. In this region, the left-lateral differential displacement of the Arabian plate with respect to the Sinai micro-plate along the Dead Sea fault results in the formation of a depression corresponding to the Gulf Aqaba. We acquired new bathymetric data in the areas of the Gulf of Aqaba and Strait of Tiran during two marine campaigns (June 2018, September 2019) in order to investigate the location of the active faults, which structure and control the morphology of the area. The high-resolution datasets (10-m posting) allow us to present a new fault map of the gulf and to discuss the seismic potential of the main active faults.</p><p>We also investigated the eastern margin of the Gulf of Aqaba and Tiran island to assess the vertical uplift rate. To do so, we computed high-resolution topographic data and we processed new series of U-Th analyses on corals from the uplifted marine terraces.</p><p>Combining our results with previous studies, we determined the local and the regional uplift in the area of the Gulf of Aqaba and Strait of Tiran.</p><p>Eventually, we discussed the tectonic evolution of the gulf since the last major change of the tectonic regime and we propose a revised tectonic evolution model of the area.</p><p> </p>


2021 ◽  
Author(s):  
Luca C Malatesta ◽  
Noah J. Finnegan ◽  
Kimberly Huppert ◽  
Emily Carreño

<p>Marine terraces are a cornerstone for the study of paleo sea level and crustal deformation. Commonly, individual erosive marine terraces are attributed to unique sea level high-stands. This stems from early reasoning that marine platforms could only be significantly widened under moderate rates of sea level rise as at the beginning of an interglacial and preserved onshore by subsequent sea level fall. However, if marine terraces are only created during brief windows at the start of interglacials, this implies that terraces are unchanged over the vast majority of their evolution, despite an often complex submergence history during which waves are constantly acting on the coastline, regardless of the sea level stand.<span> </span></p><p>Here, we question the basic assumption that individual marine terraces are uniquely linked to distinct sea level high stands and highlight how a single marine terrace can be created By reoccupation of the same uplifting platform by successive sea level stands. We then identify the biases that such polygenetic terraces can introduce into relative sea level reconstructions and inferences of rock uplift rates from marine terrace chronostratigraphy.</p><p>Over time, a terrace’s cumulative exposure to wave erosion depends on the local rock uplift rate. Faster rock uplift rates lead to less frequent (fewer reoccupations) or even single episodes of wave erosion of an uplifting terrace and the generation and preservation of numerous terraces. Whereas slower rock uplift rates lead to repeated erosion of a smaller number of polygenetic terraces. The frequency and duration of terrace exposure to wave erosion at sea level depend strongly on rock uplift rate.</p><p>Certain rock uplift rates may therefore promote the generation and preservation of particular terraces (e.g. those eroded during recent interglacials). For example, under a rock uplift rate of ca. 1.2 mm/yr, Marine Isotope Stage (MIS) 5e (ca. 120 ka) would resubmerge a terrace eroded ca. 50 kyr earlier for tens of kyr during MIS 6d–e stages (ca. 190–170 ka) and expose it to further wave erosion at sea level. This reoccupation could accordingly promote the formation of a particularly wide or well planed terrace associated with MIS 5e with a greater chance of being preserved and identified. This effect is potentially illustrated by a global compilation of rock uplift rates derived from MIS 5e terraces. It shows an unusual abundance of marine terraces documenting uplift rates between 0.8 and 1.2 mm/yr, supporting the hypothesis that these uplift rates promote exposure of the same terrace to wave erosion during multiple sea level stands.</p><p>Hence, the elevations and widths of terraces eroded during specific sea level stands vary widely from site-to-site and depend on local rock uplift rate. Terraces do not necessarily correspond to an elevation close to that of the latest sea level high-stand but may reflect the elevation of an older, longer-lived, occupation. This leads to potential misidentification of terraces if each terrace in a sequence is assumed to form uniquely at successive interglacial high stands and to reflect their elevations.</p>


2016 ◽  
Vol 4 (1) ◽  
pp. 11-23 ◽  
Author(s):  
J.-L. Grimaud ◽  
C. Paola ◽  
V. Voller

Abstract. Knickpoints are fascinating and common geomorphic features whose dynamics influence the development of landscapes and source-to-sink systems – in particular the upstream propagation of erosion. Here, we study river profiles and associated knickpoints experimentally in a microflume filled with a cohesive substrate made of silica, water and kaolinite. We focus on the effect on knickpoint dynamics of varying the distribution of base-level fall (rate, increment, and period) and substrate strength, i.e., kaolinite content. Such simple cases are directly comparable to both bedrock and alluvial river systems. Under a constant rate of base-level fall, knickpoints of similar shape are periodically generated, highlighting self-organized dynamics in which steady forcing leads to multiple knickpoint events. Temporary shielding of the bed by alluvium controls the spacing between these unit knickpoints. Shielding is, however, not effective when base-level drops exceed alluvium thickness. While the base-level fall rate controls the overall slope of experiments, it is not instrumental in dictating the major characteristics of unit knickpoints. Instead the velocity, face slope and associated plunge pool depth of these knickpoints are all strongly influenced by lithology. The period between knickpoints is set by both alluvium thickness and base-level fall rate, allowing use of knickpoint spacing along rivers as an indicator of base-level fall rate.


1970 ◽  
Vol 7 (2) ◽  
pp. 703-715 ◽  
Author(s):  
J. T. Andrews

Average rates of postglacial uplift reach a maximum value of nearly 4 m 100 y−1 over southeastern Hudson Bay, and another high cell, with rates of about 2.5 m 100 y−1, lies between Bathurst Inlet and Southampton Island. Current rates of uplift are underestimated if exponential curves are fitted solely to dated raised marine deposits without considering the amount of future recovery. Rates of rebound are, instead, derived from A/t where A is uplift in the first 1000 y since deglaciation, and t is time since deglaciation. For the northwest margin of the former ice sheet coefficients of determination for rate of uplift, at specific times, as a function of distance are [Formula: see text]. Maps of rates of uplift for northern and eastern North America are presented for 8000 y B.P., 6000 y B.P. and the present day. They reveal the existence of three uplift centers and show that rates of uplift declined from a maximum of 10 to 12 m 100 y−1, immediately following deglaciation, to a current maximum of about 1.3 m 100 y−1. Agreement is satisfactory when calculated rates of uplift are compared with those derived from geological observations, radiocarbon dates, and from water-level records. A final map shows isochrones on the uplift rate of ~1 m 100 y−1. The rate dropped to this value about 10 000 y ago on the outer northwest and southeast coasts, whereas the value might not be reached for another 2000 y in southeastern Hudson Bay.


Sign in / Sign up

Export Citation Format

Share Document