scholarly journals Good Night Sunshine: Geoengineering Solutions to Climate Change?

Eos ◽  
2017 ◽  
Vol 98 ◽  
Author(s):  
Ben van der Pluijm ◽  
Guy Brasseur

In order to limit global warming to Paris Agreement goal levels, climate engineering should be considered as a viable solution.

2021 ◽  
Vol 250 ◽  
pp. 01005
Author(s):  
Manuela Tvaronavičienė

Adaptation strategies to the climate change include measures that can be taken to take account of the new climatic conditions. This paper aims at assessing the effects of climate change on environmental sustainability. This sustainability constitutes a major problem in many countries and regions around the world that experience industrial pollution, degradation of land as well as natural disasters caused by the global warming. The paper shows that adaptation strategies are often parallel strategies that can be integrated simultaneously with the management of natural resources. They can make resources more efficient and resilient to climate change. The paper shows that reducing the carbon footprint by more than 50 percent by 2030 and eliminating it by 2050 might be a viable solution how to tackle the climate change and support the environmental sustainability.


2021 ◽  
pp. 1-10
Author(s):  
Eelco J. Rohling

This chapter outlines the challenge facing us. The Paris Agreement sets a target maximum of 2°C global warming and a preferred limit of 1.5°C. Yet, the subsequent combined national pledges for emission reduction suffice only for limiting warming to roughly 3°C. And because most nations are falling considerably short of meeting their pledges, even greater warming may become locked in. Something more drastic and wide-ranging is needed: a multi-pronged strategy. These different prongs to the climate-change solution are introduced in this chapter and explored one by one in the following chapters. First is rapid, massive reduction of greenhouse gas emissions. Second is implementation of ways to remove greenhouse gases from the atmosphere. Third may be increasing the reflectivity of Earth to incoming sunlight, to cool certain places down more rapidly. In addition, we need to protect ourselves from climate-change impacts that have already become inevitable.


2019 ◽  
Vol 5 (9) ◽  
pp. eaau2406 ◽  
Author(s):  
Miroslav Trnka ◽  
Song Feng ◽  
Mikhail A. Semenov ◽  
Jørgen E. Olesen ◽  
Kurt Christian Kersebaum ◽  
...  

Global warming is expected to increase the frequency and intensity of severe water scarcity (SWS) events, which negatively affect rain-fed crops such as wheat, a key source of calories and protein for humans. Here, we develop a method to simultaneously quantify SWS over the world’s entire wheat-growing area and calculate the probabilities of multiple/sequential SWS events for baseline and future climates. Our projections show that, without climate change mitigation (representative concentration pathway 8.5), up to 60% of the current wheat-growing area will face simultaneous SWS events by the end of this century, compared to 15% today. Climate change stabilization in line with the Paris Agreement would substantially reduce the negative effects, but they would still double between 2041 and 2070 compared to current conditions. Future assessments of production shocks in food security should explicitly include the risk of severe, prolonged, and near-simultaneous droughts across key world wheat-producing areas.


Subject The Paris Agreement and US withdrawal. Significance President Donald Trump announced his intention to withdraw from the Paris Agreement on climate change on June 1, prompting criticism from around the world. While current pledges are unlikely to change and the agreement will not see flight or withdrawal by other countries, US withdrawal imperils the ability of the agreement’s structure to accelerate climate action to a scale necessary to meet its objective of limiting global warming to below 2 degrees centigrade by 2100. Impacts The US private sector and sub-national polities will increase their climate action, though the loss of federal support will still be felt. A future US administration could re-enter the agreement, but substantial momentum will be lost diplomatically in the intervening years. Calls for greater adaptation -- rather than mitigation -- funds from climate-vulnerable states will grow more strident.


2019 ◽  
Vol 8 (3) ◽  
pp. 56-73 ◽  
Author(s):  
Ragnhild Sollund ◽  
Angela M Maldonado ◽  
Claudia Brieva Rico

The Norwegian government has made an agreement with Juan Manuel Santos, former Colombian president, to give Colombia US$48 million yearly to reduce deforestation. This forms part of a greater effort by Norway to aid countries in the South to halt climate change, through the Norwegian International Climate and Forest Initiative, instituted after the Paris Agreement in 2015. The ways efforts to reduce deforestation have been implemented have been criticised. While Norway, through this investment, appears to be a climate-concerned country, it continues with oil extraction activities. Thus, Norway exhibits double standards and shifts the problem of climate change to the countries in the South. This article examines the successes and failures of the Norwegian rainforest protection efforts in the case of Colombia, assessing the governance of the deforestation policies from the perspective of green Southern criminology and incorporating a critique of the neo-colonialist means of environmental protection established by the North.


2021 ◽  
Vol 258 ◽  
pp. 9-11
Author(s):  
Dawn Holland ◽  
Hande Kucuk ◽  
Miguel León-Ledesma

Climate change is one of the most serious risks facing humanity. Temperature rises can lead to catastrophic climate and natural events that threaten livelihoods. From rising sea levels to flooding, bush fires, extreme temperatures and droughts, the economic and human cost is too large to ignore. More than 190 world leaders got together in Glasgow during November 2021 at the UN’s COP26 climate change summit to discuss progress on the Paris Agreement (COP21) and to agree on new measures to limit global warming. In Paris, countries agreed to limit global warming to well below 2° and aim for 1.5° as well as to adapt to the impacts of a changing climate and raise the necessary funding to deliver on these aims. However, actions to date were not nearly enough as highlighted by the IPCC (2018) special report. The world is still on track to reach warming above 3° by 2100. As evident from figure 1, global temperatures have been on a steadily increasing path since the start of the 20th century and this process has substantially accelerated since the beginning of the 1980s. This has been unevenly distributed, with temperatures in the Northern hemisphere being a full 1°C higher than for the 1961–1990 average, whilst temperatures in the Southern hemisphere have increased by almost 0.5°C.


Subject The Paris climate agreement. Significance The Paris agreement is the first major international pact to combat climate change since the Kyoto Protocol of 1997. If implemented, the pact envisions robust national efforts to reduce greenhouse gas emissions and cope with the adverse effects of global warming, with significant political, economic, social and sectoral implications. Impacts Paris accord transparency measures will facilitate carbon divestment campaigns in the West. Aviation and shipping emissions are likely to be addressed in a future Paris accord review conference. Migration from climate change-vulnerable states will reopen the legal issue of internationally recognised 'climate refugee' status.


2016 ◽  
Vol 27 (8) ◽  
pp. 883-895
Author(s):  
David Campbell

Though very widely believed to be inadequate in the target it sets, the Paris Agreement is commonly thought actually to set a binding target of reducing global CO2e emissions so as to limit global warming to 2℃. Proper legal interpretation of the Agreement shows it to set no such target. It rather gives the newly industrialising countries such as China and India a permission to emit as much as they see fit. These countries have been principally responsible for the huge growth in emissions since 1990 and they will be responsible for their continued huge growth until 2030. The Paris Agreement therefore makes the policy of mitigation of global warming impossible. However, this policy has been impossible over the whole of the now more than a quarter century of international climate change policy.


2016 ◽  
Author(s):  
Vera Heck ◽  
Jonathan F. Donges ◽  
Wolfgang Lucht

Abstract. The planetary boundaries framework as proposed by Rockström et al. (2009) provides guidelines for defining thresholds in environmental variables. Their transgression is likely to result in a shift in Earth system functioning away from the relatively stable Holocene state. As the climate change boundary is already transgressed, several climate engineering methods are discussed, aiming at a reduction of atmospheric carbon concentrations to control the Earth's energy balance. Terrestrial carbon dioxide removal (tCDR) via afforestation or bioenergy production with carbon capture and storage are part of most climate change mitigation scenarios that limit global warming to less than 2 °C. We analyse the co-evolutionary interaction of societal interventions via tCDR and the natural dynamics of the Earth's carbon cycle. Applying a conceptual modelling framework, we analyse how societal monitoring and management of atmospheric CO2 concentrations with the aim of staying within a "safe" level of global warming might influence the state of the Earth system with respect to other carbon-related planetary boundaries. Within the scope of our approach, we show that societal management of atmospheric carbon via tCDR can lead to a transgression of the planetary boundaries of land system change and ocean acidification. Our analysis indicates that the opportunities to remain in a desirable region within carbon-related planetary boundaries depend critically on the sensitivity and strength of the tCDR management system, as well as underlying emission pathways. While tCDR has the potential to ensure the Earth system's persistence within a carbon safe operating space under low emission pathways, this potential decreases rapidly for medium to high emission pathways.


Sign in / Sign up

Export Citation Format

Share Document