scholarly journals Simulated Global Climate Response to Tropospheric Ozone‐Induced Changes in Plant Transpiration

2018 ◽  
Vol 45 (23) ◽  
pp. 13070-13079 ◽  
Author(s):  
S. R. Arnold ◽  
D. Lombardozzi ◽  
J.‐F. Lamarque ◽  
T. Richardson ◽  
L. K. Emmons ◽  
...  
2015 ◽  
Vol 11 (1) ◽  
pp. 221-241 ◽  
Author(s):  
J. H. C. Bosmans ◽  
F. J. Hilgen ◽  
E. Tuenter ◽  
L. J. Lourens

Abstract. The influence of obliquity, the tilt of the Earth's rotational axis, on incoming solar radiation at low latitudes is small, yet many tropical and subtropical paleoclimate records reveal a clear obliquity signal. Several mechanisms have been proposed to explain this signal, such as the remote influence of high-latitude glacials, the remote effect of insolation changes at mid- to high latitudes independent of glacial cyclicity, shifts in the latitudinal extent of the tropics, and changes in latitudinal insolation gradients. Using a sophisticated coupled ocean–atmosphere global climate model, EC-Earth, without dynamical ice sheets, we performed two experiments of obliquity extremes. Our results show that obliquity-induced changes in tropical climate can occur without high-latitude ice sheet fluctuations. Furthermore, the tropical circulation changes are consistent with obliquity-induced changes in the cross-equatorial insolation gradient, implying that this gradient may be used to explain obliquity signals in low-latitude paleoclimate records instead of the classic 65° N summer insolation curve.


2012 ◽  
Vol 25 (21) ◽  
pp. 7544-7563 ◽  
Author(s):  
Jian Lu ◽  
Bin Zhao

Two suites of partial coupling experiments are devised with the upper-ocean dynamics version (UOM) of the CCSM3 to isolate the effects of the feedbacks from the change of the wind-driven ocean circulation and air–sea heat flux in the global climate response to the forcing of doubling CO2. The partial coupling is achieved by implementing a so-called overriding technique, which helps quantitatively partition the total response in the fully coupled model to the feedback component in question and the response to external forcing in the absence of the former. By overriding the wind stress seen by the ocean and the wind speed through the bulk formula for evaporation, the experiments help to reveal that (i) the wind–evaporation–SST (WES) feedback is the main formation mechanism for the tropical SST pattern under the CO2 forcing, verifying the hypothesis proposed by Xie et al.; (ii) the weakened tropical Pacific wind is shown in this UOM model not to be the cause for the enhanced equatorial Pacific warming, as one might expect from the thermocline and Bjerknes feedbacks; (iii) WES is also the leading mechanism for shaping the tropical precipitation response in the ocean; and (iv) both the wind-driven ocean dynamical feedback and the WES feedback act to increase the persistence of the southern annular mode (SAM) and the increased time scale of the SAM due to these feedbacks manifests itself in the response of the jet shift to an identical CO2 forcing, in a manner conforming to the fluctuation–dissipation theorem.


Author(s):  
Abhijit Sarkar ◽  
Sambit Datta ◽  
Pooja Singh

Increasing population and unsustainable exploitation of nature and natural resources have made “food security” a burning issue in the 21st century. During the last 50 years, the global population has more than doubled, from 3 billion in 1959 to 6.7 billion in 2009. It is predicted that the human population will reach 8.7 - 11.3 billion by the year 2050. Growth in the global livestock industry has also been continuous over the last two decades. An almost 82% increase in future livestock is expected in developing countries within 2020, due to an expanding requirement for food of animal origin. Hence, the future demand of this increased human and livestock population will put enormous pressure on the agricultural sectors for providing sufficient food and fodder as well as income, employment and other essential ecosystem services. Therefore, a normal approach for any nation / region is to strengthen its agricultural production for meeting future demands and provide food security. Tropospheric ozone (O3), a secondary air pollutant and a major greenhouse gas, has already been recognized as a major component of predicted global climate change. Numerous studies have confirmed the negative impact of O3 on agricultural productivity throughout the world. The present chapter reviews the available literature, and catalogue the impact of this important gas pollutant on modern day agricultural production worldwide.


2020 ◽  
Vol 117 (15) ◽  
pp. 8295-8302 ◽  
Author(s):  
Marcy Rockman ◽  
Carrie Hritz

Climate science has outlined targets for reductions of greenhouse gas emissions necessary to provide a substantial chance of avoiding the worst impacts of climate change on both natural and human systems. How to reach those targets, however, requires balancing physical realities of the natural environment with the complexity of the human social environment, including histories, cultures, and values. Archaeology is the study of interactions of natural and social environments through time and across space. As well, the field of cultural resources management, which includes archaeology, regularly engages with values such as site significance and allocation of funding that the modern social environment ascribes to its own history. Through these two approaches, archaeology has potential to provide both data for and methods of addressing challenges the global community faces through climate change. To date, however, archaeology and related areas of cultural heritage have had relatively little role in the global climate response. Here, we assess the social environment of archaeology and climate change and resulting structural barriers that have limited use of archaeology in and for climate change with a case study of the US federal government. On this basis, we provide recommendations to the fields of archaeology and climate response about how to more fully realize the multiple potential uses of archaeology for the challenges of climate change.


2021 ◽  
Vol 13 (1) ◽  
pp. 397-420
Author(s):  
James E. Byers

Climate change affects ecological processes and interactions, including parasitism. Because parasites are natural components of ecological systems, as well as agents of outbreak and disease-induced mortality, it is important to summarize current knowledge of the sensitivity of parasites to climate and identify how to better predict their responses to it. This need is particularly great in marine systems, where the responses of parasites to climate variables are less well studied than those in other biomes. As examples of climate's influence on parasitism increase, they enable generalizations of expected responses as well as insight into useful study approaches, such as thermal performance curves that compare the vital rates of hosts and parasites when exposed to several temperatures across a gradient. For parasites not killed by rising temperatures, some simple physiological rules, including the tendency of temperature to increase the metabolism of ectotherms and increase oxygen stress on hosts, suggest that parasites’ intensity and pathologies might increase. In addition to temperature, climate-induced changes in dissolved oxygen, ocean acidity, salinity, and host and parasite distributions also affect parasitism and disease, but these factors are much less studied. Finally, because parasites are constituents of ecological communities, we must consider indirect and secondary effects stemming from climate-induced changes in host–parasite interactions, which may not be evident if these interactions are studied in isolation.


2019 ◽  
Vol 32 (8) ◽  
pp. 2381-2395
Author(s):  
Evelien Dekker ◽  
Richard Bintanja ◽  
Camiel Severijns

AbstractWith Arctic summer sea ice potentially disappearing halfway through this century, the surface albedo and insulating effects of Arctic sea ice will decrease considerably. The ongoing Arctic sea ice retreat also affects the strength of the Planck, lapse rate, cloud, and surface albedo feedbacks together with changes in the heat exchange between the ocean and the atmosphere, but their combined effect on climate sensitivity has not been quantified. This study presents an estimate of all Arctic sea ice related climate feedbacks combined. We use a new method to keep Arctic sea ice at its present-day (PD) distribution under a changing climate in a 50-yr CO2 doubling simulation, using a fully coupled global climate model (EC-Earth, version 2.3). We nudge the Arctic Ocean to the (monthly dependent) year 2000 mean temperature and minimum salinity fields on a mask representing PD sea ice cover. We are able to preserve about 95% of the PD mean March and 77% of the September PD Arctic sea ice extent by applying this method. Using simulations with and without nudging, we estimate the climate response associated with Arctic sea ice changes. The Arctic sea ice feedback globally equals 0.28 ± 0.15 W m−2 K−1. The total sea ice feedback thus amplifies the climate response for a doubling of CO2, in line with earlier findings. Our estimate of the Arctic sea ice feedback agrees reasonably well with earlier CMIP5 global climate feedback estimates and shows that the Arctic sea ice exerts a considerable effect on the Arctic and global climate sensitivity.


2015 ◽  
Vol 11 (10) ◽  
pp. 1335-1346 ◽  
Author(s):  
J. H. C. Bosmans ◽  
F. J. Hilgen ◽  
E. Tuenter ◽  
L. J. Lourens

Abstract. The influence of obliquity, the tilt of the Earth's rotational axis, on incoming solar radiation at low latitudes is small, yet many tropical and subtropical palaeoclimate records reveal a clear obliquity signal. Several mechanisms have been proposed to explain this signal, such as the remote influence of high-latitude glacials, the remote effect of insolation changes at mid- to high latitudes independent of glacial cyclicity, shifts in the latitudinal extent of the tropics, and changes in latitudinal insolation gradients. Using a sophisticated coupled ocean–atmosphere global climate model, EC-Earth, without dynamical ice sheets, we performed two idealized experiments of obliquity extremes. Our results show that obliquity-induced changes in tropical climate can occur without high-latitude ice sheet fluctuations. Furthermore, the tropical circulation changes are consistent with obliquity-induced changes in the cross-equatorial insolation gradient, suggesting that this gradient may be used to explain obliquity signals in low-latitude palaeoclimate records instead of the classical 65° N summer insolation curve.


2011 ◽  
Vol 4 (1) ◽  
pp. 689-763 ◽  
Author(s):  
C. D. Jones ◽  
J. K. Hughes ◽  
N. Bellouin ◽  
S. C. Hardiman ◽  
G. S. Jones ◽  
...  

Abstract. The scientific understanding of the Earth's climate system, including the central question of how the climate system is likely to respond to human-induced perturbations, is comprehensively captured in GCMs and Earth System Models(ESM). Diagnosing the simulated climate response, and comparing responses across different models, is crucially dependent on transparent assumptions of how the GCM/ESM has been driven – especially because the implementation can involve subjective decisions and may differ between modelling groups performing the same experiment. This paper outlines the climate forcings and setup of the Met Office Hadley Centre ESM, HadGEM2-ES for the CMIP5 set of centennial experiments. We document the prescribed greenhouse gas concentrations, aerosol precursors, stratospheric and tropospheric ozone assumptions, as well as implementation of land-use change and natural forcings for the HadGEM2-ES historical and future experiments following the Representative Concentration Pathways. In addition, we provide details of how HadGEM2-ES ensemble members were initialised from the control run and how the palaeoclimate and AMIP experiments, as well as the "emission-driven" RCP experiments were performed.


2020 ◽  
Author(s):  
Rowan T. Sutton ◽  
Ed Hawkins

Abstract. Policy making on climate change routinely employs socio-economic scenarios to sample the uncertainty in future forcing of the climate system, but the IPCC has not developed similar discrete scenarios to sample the uncertainty in the global climate response. Here we argue that to enable development of robust policies this gap should be addressed, and we propose a simple methodology.


Sign in / Sign up

Export Citation Format

Share Document