The Role of Oceanic Feedback in the Climate Response to Doubling CO2

2012 ◽  
Vol 25 (21) ◽  
pp. 7544-7563 ◽  
Author(s):  
Jian Lu ◽  
Bin Zhao

Two suites of partial coupling experiments are devised with the upper-ocean dynamics version (UOM) of the CCSM3 to isolate the effects of the feedbacks from the change of the wind-driven ocean circulation and air–sea heat flux in the global climate response to the forcing of doubling CO2. The partial coupling is achieved by implementing a so-called overriding technique, which helps quantitatively partition the total response in the fully coupled model to the feedback component in question and the response to external forcing in the absence of the former. By overriding the wind stress seen by the ocean and the wind speed through the bulk formula for evaporation, the experiments help to reveal that (i) the wind–evaporation–SST (WES) feedback is the main formation mechanism for the tropical SST pattern under the CO2 forcing, verifying the hypothesis proposed by Xie et al.; (ii) the weakened tropical Pacific wind is shown in this UOM model not to be the cause for the enhanced equatorial Pacific warming, as one might expect from the thermocline and Bjerknes feedbacks; (iii) WES is also the leading mechanism for shaping the tropical precipitation response in the ocean; and (iv) both the wind-driven ocean dynamical feedback and the WES feedback act to increase the persistence of the southern annular mode (SAM) and the increased time scale of the SAM due to these feedbacks manifests itself in the response of the jet shift to an identical CO2 forcing, in a manner conforming to the fluctuation–dissipation theorem.

2020 ◽  
Author(s):  
Baijun Tian

<p>The double-Intertropical Convergence Zone (ITCZ) bias is one of the most outstanding problems in climate models. This study seeks to examine the double-ITCZ bias in the latest state-of-the-art fully coupled global climate models that participated in Coupled Model Intercomparison Project (CMIP) Phase 6 (CMIP6) in comparison to their previous generations (CMIP3 and CMIP5 models). To that end, we have analyzed the long-term annual mean tropical precipitation distributions and several precipitation bias indices that quantify the double-ITCZ biases in 75 climate models including 24 CMIP3 models, 25 CMIP3 models, and 26 CMIP6 models. We find that the double-ITCZ bias and its big inter-model spread persist in CMIP6 models but the double-ITCZ bias is slightly reduced from CMIP3 or CMIP5 models to CMIP6 models.</p>


2020 ◽  
Author(s):  
Yuming Zhang ◽  
Tobias Bayr ◽  
Mojib Latif ◽  
Zhaoyang Song ◽  
Wonsun Park ◽  
...  

<p>We investigate the origin of the equatorial Pacific cold sea surface temperature (SST) bias and its link to wind biases, local and remote, in the Kiel Climate Model (KCM) with dedicated coupled and stand-alone atmosphere model experiments. In the coupled experiments, the National Centers for Environmental Prediction Climate Forecast System Reanalysis (NCEP/CFSR) wind stress is prescribed over four different spatial domains: globally, over the equatorial Pacific (EP), the northern Pacific (NP) and southern Pacific (SP). The corresponding cold SST bias over the equatorial Pacific is reduced by 94%, 48%, 11% and 22%, respectively. Thus, the equatorial Pacific SST bias is mainly attributed to the wind bias over the EP region, with small but not negligible contributions from the SP and NP regions. Biases in the ocean dynamics cause the EP SST bias, while the atmospheric thermodynamics counteract it.</p><p>To examine the origin of wind biases, we force the atmospheric component of the KCM in stand-alone mode by observed SSTs and simulated SSTs from the coupled experiments with the KCM. The results show that wind biases over the EP, NP and SP regions are initially generated in the atmosphere model and further enhanced by the biased SST in the coupled model.</p><p>We conclude that the cold SST bias over the equatorial Pacific originates from biases in the ocean circulation that are forced by the biased surface winds over the EP, NP and SP regions. On the other hand, the cold equatorial Pacific SST bias amplifies the wind biases over the EP, NP and SP regions, which in turn enhances the cold SST bias by ocean-atmosphere coupling.</p>


2020 ◽  
Vol 50 (1) ◽  
pp. 255-268
Author(s):  
Samuel J. Levang ◽  
Raymond W. Schmitt

ABSTRACTRegional connectivity is important to the global climate salinity response, particularly because salinity anomalies do not have a damping feedback with atmospheric freshwater fluxes and may therefore be advected over long distances by ocean circulation, resulting in nonlocal influences. Climate model intercomparison experiments such as CMIP5 exhibit large uncertainty in some aspects of the salinity response, hypothesized here to be a result of ocean dynamics. We use two types of Lagrangian particle tracking experiments to investigate pathways of exchange for salinity anomalies. The first uses forward trajectories to estimate average transport time scales between water cycle regimes. The second uses reverse trajectories and a freshwater accumulation method to quantitatively identify remote influences in the salinity response. Additionally, we compare velocity fields with both resolved and parameterized eddies to understand the impact of eddy stirring on intergyre exchange. These experiments show that surface anomalies are readily exchanged within the ocean gyres by the mean circulation, but intergyre exchange is slower and largely eddy driven. These dynamics are used to analyze the North Atlantic salinity response to climate warming and water cycle intensification, where the system is broadly forced with fresh surface anomalies in the subpolar gyre and salty surface anomalies in the subtropical gyres. Under these competing forcings, strong intergyre eddy fluxes carry anomalously salty subtropical water into the subpolar gyre which balances out much of the local freshwater input.


2011 ◽  
Vol 24 (6) ◽  
pp. 1688-1704 ◽  
Author(s):  
Wenju Cai ◽  
Arnold Sullivan ◽  
Tim Cowan

Abstract Simulations of individual global climate drivers using models from the Coupled Model Intercomparison Project phase 3(CMIP3) have been examined; however, the relationship among them has not been assessed. This is carried out to address several important issues, including the likelihood of the southern annular mode (SAM) forcing Indian Ocean dipole (IOD) events and the possible impact of the IOD on El Niño–Southern Oscillation (ENSO) events. Several conclusions emerge from statistics based on multimodel outputs. First, ENSO signals project strongly onto the SAM, although ENSO-forced signals tend to peak before ENSO. This feature is similar to the situation associated with the IOD. The IOD-induced signal over southern Australia, through stationary equivalent Rossby barotropic wave trains, peak before the IOD itself. Second, there is no control by the SAM on the IOD, in contrast to what has been suggested previously. Indeed, no model produces a SAM–IOD relationship that supports a positive (negative) SAM driving a positive (negative) IOD event. This is the case even in models that do not simulate a statistically significant relationship between ENSO and the IOD. Third, the IOD does have an impact on ENSO. The relationship between ENSO and the IOD in the majority of models is far weaker than the observed. However, the ENSO’s influence on the IOD is boosted by a spurious oceanic teleconnection, whereby ENSO discharge–recharge signals transmit to the Sumatra–Java coast, generating thermocline anomalies and changing IOD properties. Without the spurious oceanic teleconnection, the influence of the IOD on ENSO is comparable to the impact of ENSO on the IOD. Other model deficiencies are discussed.


2017 ◽  
Vol 30 (9) ◽  
pp. 3197-3217 ◽  
Author(s):  
Jie He ◽  
Clara Deser ◽  
Brian J. Soden

The intrinsic atmospheric and ocean-induced tropical precipitation variability is studied using millennial control simulations with various degrees of ocean coupling. A comparison between the coupled simulation and the atmosphere-only simulation with climatological sea surface temperatures (SSTs) shows that a substantial amount of tropical precipitation variability is generated without oceanic influence. This intrinsic atmospheric variability features a red noise spectrum from daily to monthly time scales and a white noise spectrum beyond the monthly time scale. The oceanic impact is inappreciable for submonthly time scales but important at interannual and longer time scales. For time scales longer than a year, it enhances precipitation variability throughout much of the tropical oceans and suppresses it in some subtropical areas, preferentially in the summer hemisphere. The sign of the ocean-induced precipitation variability can be inferred from the local precipitation–SST relationship, which largely reflects the local feedbacks between the two, although nonlocal forcing associated with El Niño–Southern Oscillation also plays a role. The thermodynamic and dynamic nature of the ocean-induced precipitation variability is studied by comparing the fully coupled and slab ocean simulations. For time scales longer than a year, equatorial precipitation variability is almost entirely driven by ocean circulation, except in the Atlantic Ocean. In the rest of the tropics, ocean-induced precipitation variability is dominated by mixed layer thermodynamics. Additional analyses indicate that both dynamic and thermodynamic oceanic processes are important for establishing the leading modes of large-scale tropical precipitation variability. On the other hand, ocean dynamics likely dampens tropical Pacific variability at multidecadal time scales and beyond.


Author(s):  
Pontus Lurcock ◽  
Fabio Florindo

Antarctic climate changes have been reconstructed from ice and sediment cores and numerical models (which also predict future changes). Major ice sheets first appeared 34 million years ago (Ma) and fluctuated throughout the Oligocene, with an overall cooling trend. Ice volume more than doubled at the Oligocene-Miocene boundary. Fluctuating Miocene temperatures peaked at 17–14 Ma, followed by dramatic cooling. Cooling continued through the Pliocene and Pleistocene, with another major glacial expansion at 3–2 Ma. Several interacting drivers control Antarctic climate. On timescales of 10,000–100,000 years, insolation varies with orbital cycles, causing periodic climate variations. Opening of Southern Ocean gateways produced a circumpolar current that thermally isolated Antarctica. Declining atmospheric CO2 triggered Cenozoic glaciation. Antarctic glaciations affect global climate by lowering sea level, intensifying atmospheric circulation, and increasing planetary albedo. Ice sheets interact with ocean water, forming water masses that play a key role in global ocean circulation.


2021 ◽  
Vol 2 (1) ◽  
Author(s):  
David Docquier ◽  
Torben Koenigk

AbstractArctic sea ice has been retreating at an accelerating pace over the past decades. Model projections show that the Arctic Ocean could be almost ice free in summer by the middle of this century. However, the uncertainties related to these projections are relatively large. Here we use 33 global climate models from the Coupled Model Intercomparison Project 6 (CMIP6) and select models that best capture the observed Arctic sea-ice area and volume and northward ocean heat transport to refine model projections of Arctic sea ice. This model selection leads to lower Arctic sea-ice area and volume relative to the multi-model mean without model selection and summer ice-free conditions could occur as early as around 2035. These results highlight a potential underestimation of future Arctic sea-ice loss when including all CMIP6 models.


2013 ◽  
Vol 2013 ◽  
pp. 1-18 ◽  
Author(s):  
Yanyun Liu ◽  
Lian Xie ◽  
John M. Morrison ◽  
Daniel Kamykowski

The regional impact of global climate change on the ocean circulation around the Galápagos Archipelago is studied using the Hybrid Coordinate Ocean Model (HYCOM) configured for a four-level nested domain system. The modeling system is validated and calibrated using daily atmospheric forcing derived from the NCEP/NCAR reanalysis dataset from 1951 to 2007. The potential impact of future anthropogenic global warming (AGW) in the Galápagos region is examined using the calibrated HYCOM with forcing derived from the IPCC-AR4 climate model. Results show that although the oceanic variability in the entire Galápagos region is significantly affected by global climate change, the degree of such effects is inhomogeneous across the region. The upwelling region to the west of the Isabella Island shows relatively slower warming trends compared to the eastern Galápagos region. Diagnostic analysis suggests that the variability in the western Galápagos upwelling region is affected mainly by equatorial undercurrent (EUC) and Panama currents, while the central/east Galápagos is predominantly affected by both Peru and EUC currents. The inhomogeneous responses in different regions of the Galápagos Archipelago to future AGW can be explained by the incoherent changes of the various current systems in the Galápagos region as a result of global climate change.


2018 ◽  
Vol 45 (23) ◽  
pp. 13070-13079 ◽  
Author(s):  
S. R. Arnold ◽  
D. Lombardozzi ◽  
J.‐F. Lamarque ◽  
T. Richardson ◽  
L. K. Emmons ◽  
...  

2019 ◽  
Vol 32 (2) ◽  
pp. 639-661 ◽  
Author(s):  
Y. Chang ◽  
S. D. Schubert ◽  
R. D. Koster ◽  
A. M. Molod ◽  
H. Wang

Abstract We revisit the bias correction problem in current climate models, taking advantage of state-of-the-art atmospheric reanalysis data and new data assimilation tools that simplify the estimation of short-term (6 hourly) atmospheric tendency errors. The focus is on the extent to which correcting biases in atmospheric tendencies improves the model’s climatology, variability, and ultimately forecast skill at subseasonal and seasonal time scales. Results are presented for the NASA GMAO GEOS model in both uncoupled (atmosphere only) and coupled (atmosphere–ocean) modes. For the uncoupled model, the focus is on correcting a stunted North Pacific jet and a dry bias over the central United States during boreal summer—long-standing errors that are indeed common to many current AGCMs. The results show that the tendency bias correction (TBC) eliminates the jet bias and substantially increases the precipitation over the Great Plains. These changes are accompanied by much improved (increased) storm-track activity throughout the northern midlatitudes. For the coupled model, the atmospheric TBCs produce substantial improvements in the simulated mean climate and its variability, including a much reduced SST warm bias, more realistic ENSO-related SST variability and teleconnections, and much improved subtropical jets and related submonthly transient wave activity. Despite these improvements, the improvement in subseasonal and seasonal forecast skill over North America is only modest at best. The reasons for this, which are presumably relevant to any forecast system, involve the competing influences of predictability loss with time and the time it takes for climate drift to first have a significant impact on forecast skill.


Sign in / Sign up

Export Citation Format

Share Document