scholarly journals An Extended MHD Study of the 16 October 2015 MMS Diffusion Region Crossing

2019 ◽  
Vol 124 (11) ◽  
pp. 8474-8487 ◽  
Author(s):  
J. M. TenBarge ◽  
J. Ng ◽  
J. Juno ◽  
L. Wang ◽  
A. H. Hakim ◽  
...  
1981 ◽  
Vol 46 (11) ◽  
pp. 2669-2675 ◽  
Author(s):  
Ivo Paseka

Hydrogenation of nitrogen oxide in acid solutions on Pt-C catalysts proceeds in dependence on experimental conditions either in purely diffusion region or in the diffusion and kinetically controlled region. The boundary between these two processes shifts to the higher ratio of NO to H2 partial pressures with increasing platinum content and decreasing intensity of agitation.


1983 ◽  
Vol 48 (12) ◽  
pp. 3340-3355 ◽  
Author(s):  
Pavel Fott ◽  
Pavel Šebesta

The kinetic parameters of reactivation of a carbonized hydrodesulphurization (HDS) catalyst by air were evaluated from combined thermogravimetric (TG) and differential thermal analysis (DTA) data. In addition, the gaseous products leaving a temperature-programmed reactor with a thin layer of catalyst were analyzed chromatographically. Two exothermic processes were found to take part in the reactivation, and their kinetics were described by 1st order equations. In the first process (180-400 °C), sulphur in Co and Mo sulphides is oxidized to sulphur dioxide; in the second process (300-540 °C), in which the essential portion of heat is produced, the deposited carbon is oxidized to give predominantly carbon dioxide. If the reaction heat is not removed efficiently enough, ignition of the catalyst takes place, which is associated with a transition to the diffusion region. The application of the obtained kinetic parameters to modelling a temperature-programmed reactivation is illustrated on the case of a single particle.


2008 ◽  
Vol 101 (8) ◽  
Author(s):  
Yang Ren ◽  
Masaaki Yamada ◽  
Hantao Ji ◽  
Stefan P. Gerhardt ◽  
Russell Kulsrud

Author(s):  
Ryuji Tomita ◽  
Hiroshi Kimura ◽  
Makoto Yasuda ◽  
Tomowo Nakayama ◽  
Kazutaka Maeda ◽  
...  

2021 ◽  
Vol 316 ◽  
pp. 794-802
Author(s):  
Andrey E. Balanovsky ◽  
Van Trieu Nguyen

The Purpose of paper is to conduct studies to assess the possibility of increasing the hardness of the surface layer of steel St3 grade by plasma heating of the applied surface coating containing powder alloy PR-N80X13S2R. Mixtures of pasta were divided into 2 groups: for furnace chemical-thermal treatment and plasma surface melting. The study of the microstructure showed a difference in the depth of the saturated layer, depending on the processing method, during chemical-thermal treatment-1 mm, plasma fusion - 2 mm. The results of measuring the surface micro-hardness showed that, the obtained coating from a mixture of PR-N80X13S2R + Cr2O3 + NH4Cl has a uniform high surface hardness (31-64 HRC), from a mixture of only PR-N80X13S2R - the surface hardness varies in a wide range (15-60 HRC). The study of the microhardness of the cross section of the surface layer showed that, the diffusion region: from a mixture of powder PR-N80X13S2R + Cr2O3 + NH4Cl has uniform hardness (450-490 HV); from a mixture of PR-N80X13S2R - hardness increases in the depth of the molten region (from 300 to 600 HV), and sharply decreases in the heat affected zone (210-170 HV). The use of PR-N80X13S2R alloy powder as the main component in the composition of the paste deposited on the St3 surface during plasma treatment leads to the formation of a doped surface layer with high hardness.


Sign in / Sign up

Export Citation Format

Share Document