scholarly journals Twentieth Century Black Carbon and Dust Deposition on South Cascade Glacier, Washington State, USA, as Reconstructed From a 158‐m‐Long Ice Core

2020 ◽  
Vol 125 (11) ◽  
Author(s):  
S. D. Kaspari ◽  
D. Pittenger ◽  
T. M. Jenk ◽  
U. Morgenstern ◽  
M. Schwikowski ◽  
...  
2018 ◽  
Vol 18 (16) ◽  
pp. 12345-12361 ◽  
Author(s):  
Christian M. Zdanowicz ◽  
Bernadette C. Proemse ◽  
Ross Edwards ◽  
Wang Feiteng ◽  
Chad M. Hogan ◽  
...  

Abstract. Black carbon aerosol (BC), which is emitted from natural and anthropogenic sources (e.g., wildfires, coal burning), can contribute to magnify climate warming at high latitudes by darkening snow- and ice-covered surfaces, and subsequently lowering their albedo. Therefore, modeling the atmospheric transport and deposition of BC to the Arctic is important, and historical archives of BC accumulation in polar ice can help to validate such modeling efforts. Here we present a > 250-year ice-core record of refractory BC (rBC) deposition on Devon ice cap, Canada, spanning the years from 1735 to 1992. This is the first such record ever developed from the Canadian Arctic. The estimated mean deposition flux of rBC on Devon ice cap for 1963–1990 is 0.2 mg m−2 a−1, which is at the low end of estimates from Greenland ice cores obtained using the same analytical method ( ∼ 0.1–4 mg m−2 a−1). The Devon ice cap rBC record also differs from the Greenland records in that it shows only a modest increase in rBC deposition during the 20th century. In the Greenland records a pronounced rise in rBC is observed from the 1880s to the 1910s, which is largely attributed to midlatitude coal burning emissions. The deposition of contaminants such as sulfate and lead increased on Devon ice cap in the 20th century but no concomitant rise in rBC is recorded in the ice. Part of the difference with Greenland could be due to local factors such as melt–freeze cycles on Devon ice cap that may limit the detection sensitivity of rBC analyses in melt-impacted core samples, and wind scouring of winter snow at the coring site. Air back-trajectory analyses also suggest that Devon ice cap receives BC from more distant North American and Eurasian sources than Greenland, and aerosol mixing and removal during long-range transport over the Arctic Ocean likely masks some of the specific BC source–receptor relationships. Findings from this study suggest that there could be a large variability in BC aerosol deposition across the Arctic region arising from different transport patterns. This variability needs to be accounted for when estimating the large-scale albedo lowering effect of BC deposition on Arctic snow/ice.


2016 ◽  
Author(s):  
Saehee Lim ◽  
Xavier Faïn ◽  
Patrick Ginot ◽  
Vladimir Mikhalenko ◽  
Stanislav Kutuzov ◽  
...  

Abstract. Black carbon (BC), emitted by fossil fuel combustion and biomass burning, is the second largest man-made contributor to global warming after carbon dioxide (Bond et al., 2013). However, limited information exists on its past emissions and atmospheric variability. In this study, we present the first high-resolution record of refractory BC (rBC, including mass concentration and size) reconstructed from ice cores drilled at a high-altitude Eastern European site in Mt. Elbrus (ELB), Caucasus (5115 m a.s.l.). The ELB ice core record, covering the period 1825–2013, reflects the atmospheric load of rBC particles at the ELB site transported from the European continent with a larger rBC input from sources located in the Eastern part of Europe. In the first half of the 20th century, European anthropogenic emissions resulted in a 1.5-fold increase in the ice core rBC mass concentrations as respect to its level in the preindustrial era (before 1850). The rBC mass concentrations increased by a 5-fold in 1960–1980, followed by a decrease until ~ 2000. Over the last decade, the rBC signal for summer time slightly increased. We have compared the signal with the atmospheric BC load simulated using past BC emissions (ACCMIP and MACCity inventories) and taken into account the contribution of different geographical region to rBC distribution and deposition at the ELB site. Interestingly, the observed rBC variability in the ELB ice core record since the 1960s is not in perfect agreement with the simulated atmospheric BC load. Similar features between the ice core rBC record and the best scenarios for the atmospheric BC load support that anthropogenic BC increase in the 20th century is reflected in the ELB ice core record. However, the peak in BC mass concentration observed in ~ 1970 in the ice core is estimated to occur a decade later from past inventories. BC emission inventories for the period 1960s–1970s may be underestimating European anthropogenic emissions. Furthermore, for summer time snow layers of the last 2000s, the slightly increasing trend of rBC deposition likely reflects recent changes in anthropogenic and biomass burning BC emissions in the Eastern part of Europe. Our study highlights that the past changes in BC emissions of Eastern Europe need to be considered in assessing on-going air quality regulation.


2019 ◽  
Author(s):  
Stanislav Kutuzov ◽  
Michel Legrand ◽  
Suzanne Preunkert ◽  
Patrick Ginot ◽  
Vladimir Mikhalenko ◽  
...  

Abstract. Ice cores are one of the most valuable paleo-archives. Records from the ice cores can provide information not only about the amount of dust in the atmosphere but also about dust sources and its changes in the past. A 182 m long ice core has been recovered at the western plateau of Mt. Elbrus (5115 m elevation) in 2009. This record was extended with the shallow ice core drilling in 2013. Here we present analysis of the concentrations of Ca2+, a commonly used proxy of dust, recorded in Elbrus ice core over the period 1774–2013. The calcium record reveals a quasi decadal variability with a general increasing trend. Using multiple regression analysis we found a statistically significant spatial correlation of the Elbrus Ca2+ summer concentrations and precipitation and soil moisture content in Levant region (specifically Syria and Iraq). The Ca2+ record also correlates with drought index in North Africa (r = 0.69 p 


2013 ◽  
Vol 6 (5) ◽  
pp. 404-411 ◽  
Author(s):  
Nerilie J. Abram ◽  
Robert Mulvaney ◽  
Eric W. Wolff ◽  
Jack Triest ◽  
Sepp Kipfstuhl ◽  
...  

2020 ◽  
Author(s):  
Marion Réveillet ◽  
Marie Dumont ◽  
Simon Gascoin ◽  
Pierre Nabat ◽  
Matthieu Lafaysse ◽  
...  

<p>Light absorbing particles such as black carbon(BC) or mineral dust are known to darken the snow surface when deposited on the snow cover and amplify several snow-albedo feedbacks, drastically modifying the snowpack evolution and the snow cover duration. Mineral dust deposition on snow is generally more variablein time than black carbon deposition and can exhibit both a high inter and intra annual variability. In France, the Alps and the Pyrenees mountain ranges are affected by large dust deposition events originating from the Sahara . The aim of this study is to quantify the impact of these impurities on the snow cover variability over the last 39 years (1979-2018).</p><p>For that purpose, the detailed snowpack model Crocus with an explicit representation of impurities is forced by SAFRAN meteorological reanalysis and a downscaling of the simulated deposition fluxes from a regional climate model (ALADIN-Climate). Different simulations are performed: (i) considering dust and/or BC (i.e. explicit representation), (ii) without impurities and (iii) considering an implicit representation (i.e. empirical parameterization based on a decreasing law of the albebo with snow age).</p><p>Simulations are compared at point scale to the snow depth measured at more than 200 Meteo-France’s stations in each massif, and spatially evaluated over the 2000-2018 period in comparing thesnow cover area, snow cover duration and the Jacard index to MODIS snow products. Scores are generally better when considering the explicit representation of the impurities than when using the snow age as a proxy for light absorbing particles content.</p><p>Results indicate that dust and BC have a significant impact on the snow cover duration with strong variations in the magnitude of the impact from one year to another and from one location to another.We also investigate the contribution of light absorbing particles depositionto snow cover inter-annual variability based on statistical approaches.</p>


2007 ◽  
Vol 7 (5) ◽  
pp. 14413-14432 ◽  
Author(s):  
J. Ming ◽  
H. Cachier ◽  
C. Xiao ◽  
D. Qin ◽  
S. Kang ◽  
...  

Abstract. A continuous measurement for black carbon conducted on a shallow ice core extracted from the East Rongbuk glacier beside Mt. Qomolangma recovers the first historical record of black carbon 13 deposition in the past ~50 years in the high Asian cryosphere. Fast increasing trend of BC concentration is revealed since the mid-1990s. Backward air trajectory analysis indicates that South Asia's emission has significant impacts on the BC deposition in the East Rongbuk glacier. The estimated atmospheric BC concentration over the East Rongbuk glacier is about 80 ngC m−3. This suggests black carbon from South Asia's emission might penetrate into the Tibetan Plateau by 18 climbing over the elevated Himalayas. Considering the consequent extra solar radiative absorption over the glacier, it is suggested that this amplitude of BC concentration in the atmosphere over the Himalayas could not be neglected when assessing the warming effect on the surface of the glaciers on the Himalayas.


2018 ◽  
Author(s):  
Dimitri Osmont ◽  
Michael Sigl ◽  
Anja Eichler ◽  
Theo M. Jenk ◽  
Margit Schwikowski

Abstract. The Amazon Basin is one of the major contributors to global biomass burning emissions. However, regional paleofire trends remain partially unknown. Due to their proximity to the Amazon Basin, Andean ice cores are suitable to reconstruct paleofire trends in South America and improve our understanding of the complex linkages between fires, climate and humans. Here we present the first refractory black carbon (rBC) ice-core record from the Andes as a proxy for biomass burning emissions in the Amazon Basin, derived from an ice core drilled at 6300 m a.s.l. from Illimani glacier in the Bolivian Andes and spanning the entire Holocene back to the last deglaciation 13 000 years ago. The Illimani rBC record displays a strong seasonality with low values during the wet season and high values during the dry season due to the combination of enhanced biomass burning emissions in the Amazon Basin and less precipitation at the Illimani site. Significant positive (negative) correlations were found with reanalyzed temperature (precipitation) data, respectively, for regions in Eastern Bolivia and Western Brazil characterized by a substantial fire activity. rBC long-term trends indirectly reflect regional climatic variations through changing biomass burning emissions as they show higher (lower) concentrations during warm/dry (cold/wet) periods, respectively, in line with climate variations such as the Younger Dryas, the 8.2 ka event, the Holocene Climatic Optimum, the Medieval Warm Period or the Little Ice Age. The highest rBC concentrations of the entire record occurred during the Holocene Climatic Optimum between 7000 and 3000 BC, suggesting that this outstanding warm and dry period caused an exceptional biomass burning activity, unprecedented in the context of the past 13 000 years. Recent rBC levels, rising since 1730 AD in the context of increasing temperatures and deforestation, are similar to those of the Medieval Warm Period. No decrease was observed in the 20th century, in contradiction with the global picture (broken fire hockey stick hypothesis).


2021 ◽  
Vol 17 (4) ◽  
pp. 1533-1545
Author(s):  
Delia Segato ◽  
Maria Del Carmen Villoslada Hidalgo ◽  
Ross Edwards ◽  
Elena Barbaro ◽  
Paul Vallelonga ◽  
...  

Abstract. Biomass burning influences global atmospheric chemistry by releasing greenhouse gases and climate-forcing aerosols. There is controversy about the magnitude and timing of Holocene changes in biomass burning emissions from millennial to centennial timescales and, in particular, about the possible impact of ancient civilizations. Here we present a 5 kyr record of fire activity proxies levoglucosan, black carbon, and ammonium measured in the RECAP (Renland ice cap) ice core, drilled in coastal eastern Greenland, and therefore affected by processes occurring in the high North Atlantic region. Levoglucosan and ammonium fluxes are high from 5 to 4.5 kyr BP (thousand years before 2000 CE) followed by an abrupt decline, possibly due to monotonic decline in Northern Hemisphere summer insolation. Levoglucosan and black carbon show an abrupt decline at 1.1 kyr BP, suggesting a decline in the wildfire regime in Iceland due to the extensive land clearing caused by Viking colonizers. All fire proxies reach a minimum during the second half of the last century, after which levoglucosan and ammonium fluxes increase again, in particular over the last 200 years. We find that the fire regime reconstructed from RECAP fluxes seems mainly related to climatic changes; however over the last millennium human activities might have influenced wildfire frequency/occurrence substantially.


Sign in / Sign up

Export Citation Format

Share Document