scholarly journals Porosity and compaction state at the active Pāpaku thrust fault in the frontal accretionary wedge of the North Hikurangi margin

Author(s):  
Jade Dutilleul ◽  
S. Bourlange ◽  
Y. Géraud
1995 ◽  
Vol 85 (3) ◽  
pp. 705-715
Author(s):  
Mark Andrew Tinker ◽  
Susan L. Beck

Abstract Regional distance surface waves are used to study the source parameters for moderate-size aftershocks of the 25 April 1992 Petrolia earthquake sequence. The Cascadia subduction zone had been relatively seismically inactive until the onset of the mainshock (Ms = 7.1). This underthrusting event establishes that the southern end of the North America-Gorda plate boundary is seismogenic. It was followed by two separate and distinct large aftershocks (Ms = 6.6 for both) occurring at 07:41 and 11:41 on 26 April, as well as thousands of other small aftershocks. Many of the aftershocks following the second large aftershock had magnitudes in the range of 4.0 to 5.5. Using intermediate-period surface-wave spectra, we estimate focal mechanisms and depths for one foreshock and six of the larger aftershocks (Md = 4.0 to 5.5). These seven events can be separated into two groups based on temporal, spatial, and principal stress orientation characteristics. Within two days of the mainshock, four aftershocks (Md = 4 to 5) occurred within 4 hr of each other that were located offshore and along the Mendocino fault. These four aftershocks comprise one group. They are shallow, thrust events with northeast-trending P axes. We interpret these aftershocks to represent internal compression within the North American accretionary prism as a result of Gorda plate subduction. The other three events compose the second group. The shallow, strike-slip mechanism determined for the 8 March foreshock (Md = 5.3) may reflect the right-lateral strike-slip motion associated with the interaction between the northern terminus of the San Andreas fault system and the eastern terminus of the Mendocino fault. The 10 May aftershock (Md = 4.1), located on the coast and north of the Mendocino triple junction, has a thrust fault focal mechanism. This event is shallow and probably occurred within the accretionary wedge on an imbricate thrust. A normal fault focal mechanism is obtained for the 5 June aftershock (Md = 4.8), located offshore and just north of the Mendocino fault. This event exhibits a large component of normal motion, representing internal failure within a rebounding accretionary wedge. These two aftershocks and the foreshock have dissimilar locations in space and time, but they do share a north-northwest oriented P axis.


2020 ◽  
Vol 39 (8) ◽  
pp. 543-550
Author(s):  
Roberto Fainstein ◽  
Juvêncio De Deus Correia do Rosário ◽  
Helio Casimiro Guterres ◽  
Rui Pena dos Reis ◽  
Luis Teófilo da Costa

Regional geophysics research provides for prospect assessment of Timor-Leste, part of the Southeast Asia Archipelago in a region embracing the Banda Arc, Timor Island, and the northwest Australia Gondwana continental margin edge. Timor Island is a microcontinent with several distinct tectonic provinces that developed initially by rifting and drifting away from the Australian Plate. A compressive convergence began in the Miocene whereby the continental edge of the large craton collided with the microcontinent, forming a subduction zone under the island. The bulk of Timor Island consists of a complex mélange of Tertiary, Cretaceous, Jurassic, Triassic, Permian, and volcanic features over a basal Gondwana craton. Toward the north, the offshore consists of a Tertiary minibasin facing the Banda Arc Archipelago, with volcanics interspersed onshore with the basal Gondwana pre-Permian. A prominent central overthrust nappe of Jurassic and younger layers makes up the mountains of Timor-Leste, terminating south against an accretionary wedge formed by this ongoing collision of Timor and Australia. The northern coast of the island is part of the Indonesian back arc, whereas the southern littoral onshore plus shallow waters are part of the accretionary prism. Deepwater provinces embrace the Timor Trough and the slope of the Australian continental margin being the most prospective region of Timor-Leste. Overall crust and mantle tectonic structuring of Timor-Leste is interpreted from seismic and potential field data, focusing mostly on its southern offshore geology where hydrocarbon prospectivity has been established with interpretation of regional seismic data and analyses of gravity, magnetic, and earthquake data. Well data tied to seismic provides focal points for stratigraphic correlation. Although all the known producing hydrocarbon reservoirs of the offshore are Jurassic sands, interpretation of Permian and Triassic stratigraphy provides knowledge for future prospect drilling risk assessment, both onshore and offshore.


2005 ◽  
Vol 8 ◽  
pp. 1-192 ◽  
Author(s):  
Stig A. Schack Pedersen

Pedersen, S.A.S. 2005: Structural analysis of the Rubjerg Knude Glaciotectonic Complex, Vendsyssel, northern Denmark. Geological Survey of Denmark and Greenland Bulletin 8, 192 pp. The Rubjerg Knude Glaciotectonic Complex is a thin-skinned thrust-fault complex that was formed during the advance of the Scandinavian Ice Sheet (30 000 – 26 000 B.P.); it is well exposed in a 6 km long coastal profile bordering the North Sea in northern Denmark. The glaciotectonic thrust-fault deformation revealed by this cliff section has been subjected to detailed structural analysis based on photogrammetric measurement and construction of a balanced cross-section. Thirteen sections are differentiated, characterising the distal to proximal structural development of the complex. The deformation affected three stratigraphic units: the Middle Weichselian arctic marine Stortorn Formation, the mainly glaciolacustrine Lønstrup Klint Formation and the dominantly fluvial Rubjerg Knude Formation; these three formations are formally defined herein, together with the Skærumhede Group which includes the Stortorn and Lønstrup Klint Formations. The Rubjerg Knude Formation was deposited on a regional unconformity that caps the Lønstrup Klint Formation and separates pre-tectonic deposits below from syntectonic deposits above. In the distal part of the complex, the thrust-fault architecture is characterised by thin flatlying thrust sheets displaced over the footwall flat of the foreland for a distance of more than 500 m. Towards the proximal part of the complex, the dip of the thrust faults increases, and over long stretches they are over-steepened to an upright position. The lowest décollement zone is about 40 m below sea level in the proximal part of the system, and shows a systematic step-wise change to higher levels in a distal (southwards) direction. The structural elements are ramps and flats related to hanging-wall and footwall positions. Above upper ramp-hinges, hanging-wall anticlines developed; footwall synclines are typically related to growth-fault sedimentation in syntectonic piggyback basins, represented by the Rubjerg Knude Formation. Blocks and slump-sheets constituting parts of the Lønstrup Klint Formation were derived from the tips of up-thrusted thrust sheets and slumped into the basins. Mud diapirs are a prominent element in the thrust-fault complex, resulting from mud mobilisation mainly at hanging-wall flats and ramps. Shortening during thrust-fault deformation has been calculated as 50%. Only about 11% of the initial stratigraphic units subjected to thrust faulting has been lost due to erosion. The thrust-fault deformation was caused by gravity spreading of an advancing ice sheet. Overpressured mud-fluid played an important role in stress transmission. The average velocity of thrust-fault displacement is estimated at 2 m per year, which led to compression of a 12 km stretch of flat-lying sediments, c. 40 m in thickness, into a thrust-fault complex 6 km in length. The thrust-fault complex is truncated by a glaciotectonic unconformity, formed when the advancing ice sheet finally overrode the complex. When this ice sheet melted away, a hilland- hole pair was formed, and meltwater deposits derived from a new ice-advance (NE-Ice) filled the depression. The NE-Ice overran the complex during its advance to the main stationary line situated in the North Sea. When this ice in turn melted away (c. 19 000 – 15 000 B.P.), the glacial landscape was draped by arctic marine deposits of the Vendsyssel Formation (new formation defined herein).


2020 ◽  
Vol 30 (1) ◽  
pp. 65
Author(s):  
Adi Patria ◽  
Atin Nur Aulia

Java Subduction is a zone of trench perpendicular convergence of Australian Plate and Southeast Asia in the south of Java. It is characterized by an almost E-W trending trench with an eastward increase of convergence velocity. Three major earthquakes with tsunamis have been caused by deformation along this subduction zone. Although many studies have undertaken to understand the nature of the subduction system, a clear relationship between structures and earthquake activities remains poorly explained. In this study, we used bathymetry, residual bathymetry, and published seismic reflection profiles to evaluate structural and morphological elements, then link the observations to earthquake activity along Java Subduction Zone. Based on seafloor morphology, characteristics of the accretionary wedge and forearc basin varies along the trench in response to the variation of seafloor morphology. Features such as seamounts and ridges which were observed in the oceanic basin may be subducted beneath accretionary wedge and disrupt the morphology of accretionary wedge, forearc basin, and trench. Earthquake activities are generally dominated by normal fault solutions in the trench, which is attributed to plate bending faults while thrust fault solution is observed in the forearc basin area. Thrust fault activities in accretionary wedge are decreased to the east, where there is no thrust fault solution observed in the eastern end of the subduction zone. Few strike-slip focal mechanisms are observed and mainly located within the subducting oceanic plate. Structures and subducting oceanic features may control the earthquake activity where deformation occurred at the edge of these features. The two largest thrust fault earthquakes in 1994 and 2006 are interpreted as a result of deformation along with plate interface on soft or unconsolidated sediment above the incoming plate. The largest normal fault earthquake with a magnitude 8.3 is possibly caused by a crustal scale-fault that breaks the entire oceanic crust.ABSTRAK - Evaluasi struktur dan gempa bumi di sepanjang zona subduksi Jawa, Indonesia. Subduksi Jawa adalah zona konvergensi yang tegak lurus palung antara Lempeng Australia dan Asia Tenggara di selatan Jawa. Hal ini ditandai dengan palung berarah hampir barat–timur dengan peningkatan kecepatan konvergensi ke arah timur. Tiga gempa bumi besar dengan tsunami disebabkan oleh deformasi di sepanjang zona subduksi ini. Meskipun banyak penelitian telah dilakukan untuk memahami sifat sistem subduksi, hubungan antara struktur dan kegiatan gempa bumi masih kurang jelas. Dalam studi ini, kami menggunakan batimetri, batimetri residual, dan profil refleksi seismik untuk mengevaluasi elemen struktur dan morfologi, kemudian menghubungkan pengamatan dengan aktivitas gempa bumi di sepanjang zona subduksi Jawa. Berdasarkan morfologi dasar laut, karakteristik prisma akresi dan cekungan busur muka bervariasi di sepanjang palung sebagai respon terhadap variasi morfologi dasar laut. Fitur seperti seamount dan punggungan yang diamati di cekungan samudera menunjam di bawah prisma akresi dan mengganggu morfologi prisma akresi, cekungan busur muka, dan palung. Aktivitas gempa bumi umumnya didominasi oleh patahan normal di palung, yang dikaitkan dengan patahan tekukan lempeng sedangkan patahan naik diamati di daerah cekungan busur muka. Aktivitas sesar naik di dalam prisma akresi berkurang ke arah timur, di mana tidak ada patahan naik yang teramati di ujung timur zona subduksi. Beberapa mekanisme patahan mendatar diamati dan terutama terletak di dalam lempeng samudera yang menunjam. Struktur dan fitur di kerak samudra yang menunjam dapat mengontrol aktivitas gempa bumi di mana deformasi terjadi di tepian fitur ini. Dua gempa bumi besar dengan sifat patahan naik pada tahun 1994 dan 2006 ditafsirkan sebagai hasil dari deformasi di sepanjang antarmuka lempeng pada sedimen lunak atau tidak terkonsolidasi di atas lempeng yang masuk. Gempa bumi besar dengan sifat sesar normal magnitude 8,3 mungkin disebabkan oleh patahan skala-kerak yang menghancurkan seluruh kerak samudera.


2020 ◽  
Vol 47 (3) ◽  
pp. 103-118
Author(s):  
Cees Van Staal ◽  
Alexandre Zagorevski

We argue there is no distinction between accretion and collision as a process, except when accretion is used in the sense of incorporating small bodies of sedimentary and/or volcanic rocks into an accretionary wedge by off-scraping or underplating. There is also a distinction when these terms are used in classifying mountain belts into accretionary and collisional orogens, although such classifications are commonly based on a qualitative assessment of the scale and nature of the accreted terranes and continents involved in formation of mountain belts. Soft collisions occur when contractional deformation and associated metamorphism are principally concentrated in rocks of the leading edge of the partially pulled-down buoyant plate and the upper plate forearc terrane. Several young arc-continent collisions show evidence for partial or wholesale subduction of the forearc such that the arc is structurally juxtaposed directly against lower plate rocks. This process may explain the poor preservation of forearcs in the geological record. Soft collisions generally change into hard collisions over time, except if the collision is rapidly followed by formation of a new subduction zone due to step-back or polarity reversal. Thickening and metamorphism of the arc's suprastructure and retro-arc part of upper plate due to contractional deformation and burial are the characteristics of a hard collision or an advancing Andean-type margin. Strong rheological coupling of the converging plates and lower and upper crust in the down-going continental margin promotes a hard collision. Application of the soft–hard terminology supports a structural juxtaposition of the Taconic soft collision recorded in the Humber margin of western Newfoundland with a hard collision recorded in the adjacent Dashwoods block. It is postulated that Dashwoods was translated dextrally along the Cabot-Baie Verte fault system from a position to the north of Newfoundland where the Notre Dame arc collided ca. 10 m.y. earlier with a wide promontory in a hyperextended segment of the Laurentian margin.


2019 ◽  
Vol 56 (11) ◽  
pp. 1144-1162 ◽  
Author(s):  
Xavier Le Pichon ◽  
A.M. Celâl Şengör ◽  
Caner İmren

We discuss the structure of the present Hellenic subduction zone. We show that the present Hellenic subduction zone was formed at about 15 Ma when it started to consume the Mediterranean lithosphere and to form the large accretionary wedge that covers a large part of the eastern Mediterranean. We establish that there is independent evidence that the very large Hellenic Trough that it created was formed simultaneously. Shortly before, an 8–10 km thick backstop that extends 200 km southward, where it presently abuts the African margin, was put into place. We reconstruct the northern margin of the eastern Mediterranean Sea prior to the Hellenic subduction in a new and independent way. The faults recently identified by Sachpazi et al. (2016a . Geophysical Research Letters, 43: 651–658) and Sachpazi et al. (2016b . Geophysical Research Letters, 43: 9619–9626) within the Hellenic seismic slab are a key element of our reconstruction. This is because the slab, which is part of the Nubia plate, is rigid and the faults within it coincide with the lines of slip congruent with the relative motion of the Aegean block over it. These faults demonstrate that about 400 to 500 kilometers of eastern Mediterranean lithosphere have been subducted with essentially the same southwestward direction of motion during the last 15 Myr. Our reconstruction shows that before the onset of the Hellenic subduction, the northern margin of the eastern Mediterranean Sea coincided with a major Jurassic transform fault that limited the eastern Mediterranean to the north during its formation in the Jurassic and Early Cretaceous as proposed in part 1. We discuss the implications of this reconstruction on the Neogene evolution of the Anatolia–Aegea block and its geodynamics.


1999 ◽  
Vol 52 (2) ◽  
pp. 217-228 ◽  
Author(s):  
Michael Polenz ◽  
Harvey M. Kelsey

The Crescent City coastal plain is a low-lying surface of negligible relief that lies on the upper plate of the Cascadia subduction zone in northernmost California. Whereas coastal reaches to the north in southern Oregon and to the south near Cape Mendocino contain flights of deformed marine terraces from which a neotectonic history can be deduced, equivalent terraces on the Crescent City coastal plain are not as pronounced. Reexamination of the coastal plain revealed three late Pleistocene marine terraces, identified on the basis of subtle geomorphic boundaries and further delineated by differentiable degrees of soil development. The youngest marine terrace is preserved in the axial valley of a broad syncline, and the two older marine terraces face each other across the axial region. An active thrust fault, previously recognized offshore, underlies the coastal plain, and folding in the hanging wall of this thrust fault has dictated, through differential uplift, the depositional limits of each successive marine terrace unit. This study demonstrates the importance of local structures in coastal landscape evolution along tectonically active coastlines and exemplifies the utility of soil relative-age determinations to identify actively growing folds in landscapes of low relief.


Sign in / Sign up

Export Citation Format

Share Document