scholarly journals Assessment to China's recent emission pattern shifts

2021 ◽  
Author(s):  
Yuru Guan ◽  
Yuli Shan ◽  
Qi Huang ◽  
Huilin Chen ◽  
Dan Wang ◽  
...  
Keyword(s):  
Author(s):  
R. Levi-Setti ◽  
J. M. Chabala ◽  
Y. L. Wang

We have shown the feasibility of 20 nm lateral resolution in both topographic and elemental imaging using probes of this size from a liquid metal ion source (LMIS) scanning ion microprobe (SIM). This performance, which approaches the intrinsic resolution limits of secondary ion mass spectrometry (SIMS), was attained by limiting the size of the beam defining aperture (5μm) to subtend a semiangle at the source of 0.16 mr. The ensuing probe current, in our chromatic-aberration limited optical system, was 1.6 pA with Ga+ or In+ sources. Although unique applications of such low current probes have been demonstrated,) the stringent alignment requirements which they imposed made their routine use impractical. For instance, the occasional tendency of the LMIS to shift its emission pattern caused severe misalignment problems.


2003 ◽  
Vol 771 ◽  
Author(s):  
Adosh Mehta ◽  
Pradeep Kumar ◽  
Jie Zheng ◽  
Robert M. Dickson ◽  
Bobby Sumpter ◽  
...  

AbstractDipole emission pattern imaging experiments on single chains of common conjugated polymers (solubilized poly phenylene vinylenes) isolated by ink-jet printing techniques have revealed surprising uniformity in transition moment orientation perpendicular to the support substrate. In addition to uniform orientation, these species show a number of striking differences in photochemical stability, polarization anisotropy,[1] and spectral signatures[2] with respect to similar (well-studied) molecules dispersed in dilute thin-films. Combined with molecular mechanics simulation, these results point to a structural picture of a folded macromolecule as a highly ordered cylindrical nanostructure whose long-axis (approximately collinear with the conjugation axis) is oriented, by an electrostatic interaction, perpendicular to the coverglass substrate. These results suggest a number of important applications in nanoscale photonics and molecular-scale optoelectronics.


Nanophotonics ◽  
2020 ◽  
Vol 9 (11) ◽  
pp. 3557-3565
Author(s):  
Guorui Zhang ◽  
Ying Gu ◽  
Qihuang Gong ◽  
Jianjun Chen

AbstractDue to small optical mode volumes and linear polarizations of surface-plasmon-polariton (SPP) resonant modes in metallic antennas, it is very difficult to obtain complex emission patterns and polarizations for single-photon emitters. Herein, nonresonant enhancement in a silver nanowire is used to both enhance emission rates and extract a z-oriented dipole, and then the symmetry of metallic nanostructures is proposed to tailor the patterns and polarizations of single-photon emission. The emission pattern of a quantum dot located close to a metallic nanostructure with a symmetric axis is split into multiple flaps. The number of splitting flaps is equal to the order of the symmetric axis. Moreover, the electric vectors of the emitted photons become centrally symmetric about the symmetric axis. The above phenomena are well explained by both a simulation and an image dipole model. The structural-symmetry-tailoring mechanism may open up a new avenue in the design of multifunctional and novel quantum-plasmonic devices.


1962 ◽  
Vol 1 (4) ◽  
pp. 537 ◽  
Author(s):  
R. L. Aagard ◽  
D. L. Hardwick ◽  
J. F. Ready

2006 ◽  
Vol 3 (1) ◽  
pp. 93-101 ◽  
Author(s):  
H. Hakola ◽  
V. Tarvainen ◽  
J. Bäck ◽  
H. Ranta ◽  
B. Bonn ◽  
...  

Abstract. The seasonal variation of mono-and sesquiterpene emission rates of Scots pine was measured from April to October in 2004. The emission rates were measured daily in the afternoons with the exception of weekends. Emissions were measured from two branches; one of them was debudded in May (branch A), while the other was allowed to grow new needles (branch B). The monoterpene emission pattern remained almost constant throughout the measurement period, Δ3-carene being the dominant monoterpene (50-70% of the VOC emission). The standard monoterpene emission potential (30°C) was highest during early summer in June (the average of the two branches 1.35 µg g-1h-1) and lowest during early autumn in September (the average of the two branches 0.20 µg g-1h-1. The monoterpene emission potential of branch A remained low also during October, whereas the emission potential of branch B was very high in October. The sesquiterpenes were mainly emitted during mid summer, the dominant sesquiterpene being β-caryophyllene. Branch A had a higher sesquiterpene emission potential than branch B and the emission maximum occurred concomitant with the high concentration of airborne pathogen spores suggesting a potential defensive role of the sesquiterpene emissions. The sesquiterpene emissions were well correlated with linalool and 1,8-cineol emissions, but not with monoterpenes. Sesquiterpene and 1,8-cineol emissions were equally well described by the temperature dependent and the temperature and light dependent algorithms. This is due to the saturation of the light algorithm as the measurements were always conducted during high light conditions.


2018 ◽  
Vol 615 ◽  
pp. A154 ◽  
Author(s):  
F. J. Pozuelos ◽  
E. Jehin ◽  
Y. Moulane ◽  
C. Opitom ◽  
J. Manfroid ◽  
...  

Context. Thanks to the Rosetta mission, our understanding of comets has greatly improved. A very good opportunity to apply this knowledge appeared in early 2017 with the appearance of the Jupiter family comet 41P/Tuttle–Giacobini–Kresak. The comet was only 0.15 au from the Earth as it passed through perihelion on April 12, 2017. We performed an observational campaign with the TRAPPIST telescopes that covered almost the entire period of time when the comet was active. Aims. In this work we present a comprehensive study of the evolution of the dust environment of 41P based on observational data from January to July, 2017. In addition, we performed numerical simulations to constrain its origin and dynamical nature. Methods. To model the observational data set we used a Monte Carlo dust tail model, which allowed us to derive the dust parameters that best describe its dust environment as a function of heliocentric distance: its dust production rate, the size distribution and ejection velocities of the dust particles, and its emission pattern. In order to study its dynamical evolution, we completed several experiments to evaluate the degree of stability of its orbit, its life time in its current region close to Earth, and its future behaviour. Results. From the dust analysis, we found that comet 41P is a dust-poor comet compared to other comets of the same family, with a complex emission pattern that shifted from full isotropic to anisotropic ejection sometime during February 24–March 14 in 2017, and then from anisotropic to full isotropic again between June 7 and 28. During the anisotropic period, the emission was controlled by two strongly active areas, where one was located in the southern and one in the northern hemisphere of the nucleus. The total dust mass loss is estimated to be ~7.5 × 108 kg. From the dynamical simulations we estimate that ~3600 yr is the period of time during which 41P will remain in a similar orbit. Taking into account the estimated mass loss per orbit, after 3600 yr, the nucleus may lose about 30% of its mass. However, based on its observed dust-to-water mass ratio and its propensity to outbursts, the lifetime of this comet could be much shorter.


2006 ◽  
Vol 55 (10) ◽  
pp. 5375
Author(s):  
Dong Li-Fang ◽  
Fan Wei-Li ◽  
Li Xue-Chen ◽  
Gao Rui-Ling ◽  
Liu Fu-Cheng ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document