Does Earthquake Stress Drop Increase with Depth in the Crust?

Author(s):  
R. E. Abercrombie ◽  
D. T. Trugman ◽  
P. M. Shearer ◽  
X. Chen ◽  
J. Zhang ◽  
...  
Keyword(s):  
Author(s):  
Serge A. Shapiro ◽  
Carsten Dinske

AbstractSometimes, a rather high stress drop characterizes earthquakes induced by underground fluid injections or productions. In addition, long-term fluid operations in the underground can influence a seismogenic reaction of the rock per unit volume of the fluid involved. The seismogenic index is a quantitative characteristic of such a reaction. We derive a relationship between the seismogenic index and stress drop. This relationship shows that the seismogenic index increases with the average stress drop of induced seismicity. Further, we formulate a simple and rather general phenomenological model of stress drop of induced earthquakes. This model shows that both a decrease of fault cohesion during the earthquake rupture process and an enhanced level of effective stresses could lead to high stress drop. Using these two formulations, we propose the following mechanism of increasing induced seismicity rates observed, e.g., by long-term gas production at Groningen. Pore pressure depletion can lead to a systematic increase of the average stress drop (and thus, of magnitudes) due to gradually destabilizing cohesive faults and due to a general increase of effective stresses. Consequently, elevated average stress drop increases seismogenic index. This can lead to seismic risk increasing with the operation time of an underground reservoir.


1999 ◽  
Vol 122 (2) ◽  
pp. 203-208 ◽  
Author(s):  
Chuwei Zhou ◽  
Wei Yang ◽  
Daining Fang

Mechanical properties and damage evolution of short-fiber-reinforced metal matrix composites (MMC) are studied under a micromechanics model accounting for the history of cooling and thermal cycling. A cohesive interface is formulated in conjunction with the Gurson-Tvergaard matrix damage model. Attention is focused on the residual stresses and damages by the thermal mismatch. Substantial stress drop in the uniaxial tensile response is found for a computational cell that experienced a cooling process. The stress drop is caused by debonding along the fiber ends. Subsequent thermal cycling lowers the debonding stress and the debonding strain. Micromechanics analysis reveals three failure modes. When the thermal histories are ignored, the cell fails by matrix damage outside the fiber ends. With the incorporation of cooling, the cell fails by fiber end debonding and the subsequent transverse matrix damage. When thermal cycling is also included, the cell fails by jagged debonding around the fiber tops followed by necking instability of matrix ligaments. [S0094-4289(00)01202-0]


2021 ◽  
Author(s):  
Itzhak Lior ◽  
Anthony Sladen ◽  
Diego Mercerat ◽  
Jean-Paul Ampuero ◽  
Diane Rivet ◽  
...  

<p>The use of Distributed Acoustic Sensing (DAS) presents unique advantages for earthquake monitoring compared with standard seismic networks: spatially dense measurements adapted for harsh environments and designed for remote operation. However, the ability to determine earthquake source parameters using DAS is yet to be fully established. In particular, resolving the magnitude and stress drop, is a fundamental objective for seismic monitoring and earthquake early warning. To apply existing methods for source parameter estimation to DAS signals, they must first be converted from strain to ground motions. This conversion can be achieved using the waves’ apparent phase velocity, which varies for different seismic phases ranging from fast body-waves to slow surface- and scattered-waves. To facilitate this conversion and improve its reliability, an algorithm for slowness determination is presented, based on the local slant-stack transform. This approach yields a unique slowness value at each time instance of a DAS time-series. The ability to convert strain-rate signals to ground accelerations is validated using simulated data and applied to several earthquakes recorded by dark fibers of three ocean-bottom telecommunication cables in the Mediterranean Sea. The conversion emphasizes fast body-waves compared to slow scattered-waves and ambient noise, and is robust even in the presence of correlated noise and varying wave propagation directions. Good agreement is found between source parameters determined using converted DAS waveforms and on-land seismometers for both P- and S-wave records. The demonstrated ability to resolve source parameters using P-waves on horizontal ocean-bottom fibers is key for the implementation of DAS based earthquake early warning, which will significantly improve hazard mitigation capabilities for offshore and tsunami earthquakes.</p>


1990 ◽  
Vol 80 (6A) ◽  
pp. 1553-1570 ◽  
Author(s):  
R. B. Horner ◽  
R. J. Wetmiller ◽  
M. Lamontagne ◽  
M. Plouffe

Abstract Relative locations of 323 large aftershocks (M 3.0 or greater) in the period from 5 October 1985 to 25 March 1988 show that the Ms 6.6 event on 5 October 1985 initiated at 62.208°N, 124.217°W, about 2.5 km northeast of the Ms 6.9 main shock on 23 December 1985. The overall aftershock distribution suggests the October rupture was primarily a west-dipping, low-angle thrust. In subsequent aftershock activity, the main rupture plane was marked by a distinct quiescent area of about 200 km2 that persisted until the 23 December event. Most of the stress drop and slip occurred in this area. Following the 23 December rupture, a similar sized quiescent zone was also observed; however, it was only evident during the first 24 hr of the aftershock sequence, and the area was about 50 per cent too small to yield the overall stress drop. The additional area appeared to come from secondary rupture zones that developed coincident with the main shock rupture. Precise locations of 182 small (M 3.0 or less) aftershocks recorded during a third field survey from 12 to 21 September 1986 indicated at least one and probably three high-angle faults. Composite mechanism solutions showed thrust faulting except in a region directly south of the main shock rupture areas where there is a bend in one of the secondary fault zones and a concentration of aftershock activity. Mechanism solutions calculated for five of the largest aftershocks in the same region also indicated a similar variability. Development of secondary fault zones explained the increased complexity of the December event and may also provide an explanation for the vertical peak acceleration exceeding 2 g that was recorded about 10 sec after the December rupture initiated.


1983 ◽  
Vol 73 (3) ◽  
pp. 853-862
Author(s):  
J. Lomnitz-Adler

abstract A model is presented for the simulation of the statistical features of the earthquake process. An analytical solution is given for a simple case, and a numerical calculation of spatial and stress drop frequency distribution has been carried out. Extensions of the model are discussed.


1984 ◽  
Vol 74 (1) ◽  
pp. 27-40
Author(s):  
M. E. O'Neill

Abstract Source dimensions and stress drops of 30 small Parkfield, California, earthquakes with coda duration magnitudes between 1.2 and 3.9 have been estimated from measurements on short-period velocity-transducer seismograms. Times from the initial onset to the first zero crossing, corrected for attenuation and instrument response, have been interpreted in terms of a circular source model in which rupture expands radially outward from a point until it stops abruptly at radius a. For each earthquake, duration magnitude MD gave an estimate of seismic moment MO and MO and a together gave an estimate of static stress drop. All 30 earthquakes are located on a 6-km-long segment of the San Andreas fault at a depth range of about 8 to 13 km. Source radius systemically increases with magnitude from about 70 m for events near MD 1.4 to about 600 m for an event of MD 3.9. Static stress drop ranges from about 2 to 30 bars and is not strongly correlated with magnitude. Static stress drop does appear to be spatially dependent; the earthquakes with stress drops greater than 20 bars are concentrated in a small region close to the hypocenter of the magnitude 512 1966 Parkfield earthquake.


1982 ◽  
Vol 72 (4) ◽  
pp. 1049-1068
Author(s):  
John Boatwright

abstract A model for the far-field acceleration radiated by an incoherent rupture is constructed by combining Madariaga's (1977) theory for the high-frequency radiation from crack models of faulting with a simple statistical source model. By extending Madariaga's results to acceleration pulses with finite durations, the peak acceleration of a pulse radiated by a single stop or start of a crack tip is shown to depend on the dynamic stress drop of the subevent, the total change in rupture velocity, and the ratio of the subevent radius to the acceleration pulse width. An incoherent rupture is approximated by a sample from a self-similar distribution of coherent subevents. Assuming the subevents fit together without overlapping, the high-frequency level of the acceleration spectra depends linearly on the rms dynamic stress drop, the average change in rupture velocity, and the square root of the overall rupture area. The high-frequency level is independent, to first order, of the rupture complexity. Following Hanks (1979), simple approximations are derived for the relation between the rms dynamic stress drop and the rms acceleration, averaged over the pulse duration. This relation necessarily depends on the shape of the body-wave spectra. The body waves radiated by 10 small earthquakes near Monticello Dam, South Carolina, are analyzed to test these results. The average change of rupture velocity of Δv = 0.8β associated with the radiation of the acceleration pulses is estimated by comparing the rms acceleration contained in the P waves to that in the S waves. The rms dynamic stress drops of the 10 events, estimated from the rms accelerations, range from 0.4 to 1.9 bars and are strongly correlated with estimates of the apparent stress.


Author(s):  
Dino Bindi ◽  
Hoby N. T. Razafindrakoto ◽  
Matteo Picozzi ◽  
Adrien Oth

ABSTRACT We investigate the impact of considering a depth-dependent attenuation model on source parameters assessed through a spectral decomposition. In particular, we evaluate the effect of considering the hypocentral depth as an additional variable for the attenuation model, using as the target the tendency of the average stress drop to increase with depth, as observed in recent studies. We analyze the Fourier spectra of S-wave windows for about 1900 earthquakes with a magnitude above 2.5 recorded in the Ridgecrest region, southern California. Two different parameterizations of the attenuation term are implemented in the spectral decomposition, either as a function of the hypocentral distance alone or as a function of both epicentral distance and depth. The comparison of the spectral attenuation curves shows that, although the hypocentral model describes, on average, the range of values spanned by the attenuation curve for different depths, systematic differences with distance, depth, and frequency are observed. These differences are transferred to the source spectra and, in turn, to the source parameters extracted from the best-fitting ω−2 models. In particular, stress drops for events deeper than 7 km are, on average, almost double even when depth is introduced explicitly in the attenuation model. The increase of stress drop with depth is confirmed also after accounting for the increase of the shear velocity with depth, which absorbs about 30%–40% of the total increase. Moreover, a qualitative comparison with a model for the gradient of the effective normal stress confirms the reliability of the observed trend. Finally, the coherent spatial patterns shown by a simplified 2D tomographic representation of the spectral residuals highlights the impact on ground-shaking variability of the lateral variability of the crustal attenuation properties in the region.


Sign in / Sign up

Export Citation Format

Share Document