scholarly journals Impact of Assimilating High‐Resolution Atmospheric Motion Vectors on Convective Scale Short‐Term Forecasts. Part II: Assimilation Experiments of GOES‐16 Satellite Derived Winds

Author(s):  
Juan Zhao ◽  
Jidong Gao ◽  
Thomas Jones ◽  
Junjun Hu
2019 ◽  
Vol 11 (17) ◽  
pp. 1981 ◽  
Author(s):  
David Stettner ◽  
Christopher Velden ◽  
Robert Rabin ◽  
Steve Wanzong ◽  
Jaime Daniels ◽  
...  

Atmospheric motion vectors (AMVs) derived from geostationary meteorological satellites have long stood as an important observational contributor to analyses of global-scale tropospheric wind patterns. This paradigm is evolving as numerical weather prediction (NWP) models and associated data assimilation systems are at the point of trying to better resolve finer scales. Understanding the physical processes that govern convectively-driven weather systems is usually hindered by a lack of observations on the scales necessary to adequately describe these events. Fortunately, satellite sensors and associated scanning strategies have improved and are now able to resolve convective-scale flow fields. Coupled with the increased availability of computing capacity and more sophisticated algorithms to track cloud motions, we are now poised to investigate the development and application of AMVs to convective-scale weather events. Our study explores this frontier using new-generation GOES-R Series imagery with a focus on hurricane applications. A proposed procedure for processing enhanced AMV datasets derived from multispectral geostationary satellite imagery for hurricane-scale analyses is described. We focus on the use of the recently available GOES-16 mesoscale domain sector rapid-scan (1-min) imagery, and emerging methods to optimally extract wind estimates (atmospheric motion vectors (AMVs)) from close-in-time sequences. It is shown that AMV datasets can be generated on spatiotemporal scales not only useful for global applications, but for mesoscale applications such as hurricanes as well.


Author(s):  
Javier García-Pereda ◽  
José Miguel Fernández-Serdán ◽  
Óscar Alonso ◽  
Adrián Sanz ◽  
Rocío Guerra ◽  
...  

The “NWCSAF High Resolution Winds (NWC/GEO-HRW)” software is developed by the EUMETSAT’s “Satellite Application Facility on support to Nowcasting and very short range forecasting (NWCSAF)”, inside its stand-alone software package for calculation of meteorological products with geostationary satellite data (NWC/GEO). The whole NWC/GEO software package can be obtained after registration at the NWCSAF Helpdesk, www.nwcsaf.org. It is easy to get, install and use. The code is easy to read and fully documented. And in the NWCSAF Helpdesk, users find support and help for its use. “NWCSAF High Resolution Winds” provides a detailed calculation of Atmospheric Motion Vectors (AMVs) and Trajectories, locally and in near real time, using as input NWP model data and geostationary satellite image data. The latest version of the software, v2018, is able to process MSG, Himawari-8/9, GOES-N and GOES-R satellite series images, so that AMVs and Trajectories can be calculated all throughout the planet Earth with the same algorithm and quality. In the “2014 and 2018 AMV Intercomparison Studies”, “NWCSAF High Resolution Winds” has shown to be one of the two best AMV algorithms for both MSG and Himawari-8/9 satellites. And the “Coordination Group for Meteorological Satellites (CGMS)” has recognized in its “2012 Meeting Report”: 1. “NWCSAF High Resolution Winds” fulfills the requirements to be a portable stand-alone AMV calculation software due to its easy installation and usability. 2. It has been successfully adapted by some CGMS members and serves as an important tool for development. It is modular, well documented, and well suited as stand-alone AMV software. 3. Although alternatives exist as portable stand-alone AMV calculation software, they are not as advanced in terms of documentation and do not have an existing Helpdesk. Considering this, a full description and validation of the “NWCSAF/High Resolution Winds” is shown here for the first time in a peer-reviewed paper. The procedure to obtain the software for operational meteorology and research is also explained.


2019 ◽  
Vol 11 (17) ◽  
pp. 2032 ◽  
Author(s):  
Javier García-Pereda ◽  
José Fernández-Serdán ◽  
Óscar Alonso ◽  
Adrián Sanz ◽  
Rocío Guerra ◽  
...  

The High Resolution Winds (NWC/GEO-HRW) software is developed by the EUMETSAT Satellite Application Facility on Support to Nowcasting and Very Short Range Forecasting (NWCSAF). It is part of a stand-alone software package for the calculation of meteorological products with geostationary satellite data (NWC/GEO). NWCSAF High Resolution Winds provides a detailed calculation of Atmospheric Motion Vectors (AMVs) and Trajectories, locally and in near real time, using as input geostationary satellite image data, NWP model data, and OSTIA sea surface temperature data. The whole NWC/GEO software package can be obtained after registration at the NWCSAF Helpdesk, www.nwcsaf.org, where users also find support and help for its use. NWC/GEO v2018.1 software version, available since autumn 2019, is able to process MSG, Himawari-8/9, GOES-N, and GOES-R satellite series images, so that AMVs and trajectories can be calculated all throughout the planet Earth with the same algorithm and quality. Considering other equivalent meteorological products, in the ‘2014 and 2018 AMV Intercomparison Studies’ NWCSAF High Resolution Winds compared very positively with six other AMV algorithms for both MSG and Himawari-8/9 satellites. Finally, the Coordination Group for Meteorological Satellites (CGMS) recognized in its ‘2012 Meeting Report’: (1) NWCSAF High Resolution Winds fulfills the requirements to be a portable stand-alone AMV calculation software due to its easy installation and usability. (2) It has been successfully adopted by some CGMS members and serves as an important tool for development. It is modular, well documented, and well suited as stand-alone AMV software. (3) Although alternatives exist as portable stand-alone AMV calculation software, they are not as advanced in terms of documentation and do not have an existing Helpdesk.


2017 ◽  
Vol 145 (3) ◽  
pp. 1107-1125 ◽  
Author(s):  
Christopher Velden ◽  
William E. Lewis ◽  
Wayne Bresky ◽  
David Stettner ◽  
Jaime Daniels ◽  
...  

It is well known that global numerical model analyses and forecasts benefit from the routine assimilation of atmospheric motion vectors (AMVs) derived from meteorological satellites. Recent studies have also shown that the assimilation of enhanced (spatial and temporal) AMVs can benefit research-mode regional model forecasts of tropical cyclone track and intensity. In this study, the impact of direct assimilation of enhanced (higher resolution) AMV datasets in the NCEP operational Hurricane Weather Research and Forecasting Model (HWRF) system is investigated. Forecasts of Atlantic tropical cyclone track and intensity are examined for impact by inclusion of enhanced AMVs via direct data assimilation. Experiments are conducted for AMVs derived using two methodologies (“HERITAGE” and “GOES-R”), and also for varying levels of quality control in order to assess and inform the optimization of the AMV assimilation process. Results are presented for three selected Atlantic tropical cyclone events and compared to Control forecasts without the enhanced AMVs as well as the corresponding operational HWRF forecasts. The findings indicate that the direct assimilation of high-resolution AMVs has an overall modest positive impact on HWRF forecasts, but the impact magnitudes are dependent on the 1) availability of rapid scan imagery used to produce the AMVs, 2) AMV derivation approach, 3) level of quality control employed in the assimilation, and 4) vortex initialization procedure (including the degree to which unbalanced states are allowed to enter the model analyses).


2021 ◽  
Vol 13 (9) ◽  
pp. 1702
Author(s):  
Kévin Barbieux ◽  
Olivier Hautecoeur ◽  
Maurizio De Bartolomei ◽  
Manuel Carranza ◽  
Régis Borde

Atmospheric Motion Vectors (AMVs) are an important input to many Numerical Weather Prediction (NWP) models. EUMETSAT derives AMVs from several of its orbiting satellites, including the geostationary satellites (Meteosat), and its Low-Earth Orbit (LEO) satellites. The algorithm extracting the AMVs uses pairs or triplets of images, and tracks the motion of clouds or water vapour features from one image to another. Currently, EUMETSAT LEO satellite AMVs are retrieved from georeferenced images from the Advanced Very-High-Resolution Radiometer (AVHRR) on board the Metop satellites. EUMETSAT is currently preparing the operational release of an AMV product from the Sea and Land Surface Temperature Radiometer (SLSTR) on board the Sentinel-3 satellites. The main innovation in the processing, compared with AVHRR AMVs, lies in the co-registration of pairs of images: the images are first projected on an equal-area grid, before applying the AMV extraction algorithm. This approach has multiple advantages. First, individual pixels represent areas of equal sizes, which is crucial to ensure that the tracking is consistent throughout the processed image, and from one image to another. Second, this allows features that would otherwise leave the frame of the reference image to be tracked, thereby allowing more AMVs to be derived. Third, the same framework could be used for every LEO satellite, allowing an overall consistency of EUMETSAT AMV products. In this work, we present the results of this method for SLSTR by comparing the AMVs to the forecast model. We validate our results against AMVs currently derived from AVHRR and the Spinning Enhanced Visible and InfraRed Imager (SEVIRI). The release of the operational SLSTR AMV product is expected in 2022.


2018 ◽  
Vol 35 (9) ◽  
pp. 1737-1752 ◽  
Author(s):  
Dae-Hui Kim ◽  
Hyun Mee Kim

AbstractIn this study, the effect of assimilating Himawari-8 (HIMA-8) atmospheric motion vectors (AMVs) on forecast errors in East Asia is evaluated using observation system experiments based on the Weather Research and Forecasting Model and three-dimensional variational data assimilation system. The experimental period is from 1 August to 30 September 2015, during which both HIMA-8 and Multifunctional Transport Satellite-2 (MTSAT-2) AMVs exist. The energy-norm forecast error based on the analysis of each experiment as reference was reduced more by replacing MTSAT-2 AMVs with HIMA-8 AMVs than by adding HIMA-8 AMVs to the MTSAT-2 AMVs. When the HIMA-8 AMVs replaced or were added to MTSAT-2 AMVs, the observation impact was reduced, which implies the analysis–forecast system was improved by assimilating HIMA-8 AMVs. The root-mean-square error (RMSE) of the 500-hPa geopotential height forecasts based on the analysis of each experiment decreases more effectively when the region lacking in upper-air wind observations is reduced by assimilating both MTSAT-2 and HIMA-8 AMVs. When the upper-air radiosonde (SOUND) observations are used as reference, assimilating more HIMA-8 AMVs decreases the forecast error. Based on various measures, the assimilation of HIMA-8 AMVs has a positive effect on the reduction of forecast errors. The effects on the energy-norm forecast error and the RMSE based on SOUND observations are greater when HIMA-8 AMVs replaced MTSAT-2 AMVs. However, the effects on the RMSE of the 500-hPa geopotential height forecasts are greater when both HIMA-8 and MTSAT-2 AMVs were assimilated, which implies potential benefits of assimilating AMVs from several satellites for forecasts over East Asia depending on the choice of measurement.


2006 ◽  
Vol 21 (4) ◽  
pp. 663-669 ◽  
Author(s):  
Dongliang Wang ◽  
Xudong Liang ◽  
Yihong Duan ◽  
Johnny C. L. Chan

Abstract The fifth-generation Pennsylvania State University–National Center for Atmospheric Research nonhydrostatic Mesoscale Model is employed to evaluate the impact of the Geostationary Meteorological Satellite-5 water vapor and infrared atmospheric motion vectors (AMVs), incorporated with the four-dimensional variational (4DVAR) data assimilation technique, on tropical cyclone (TC) track predictions. Twenty-two cases from eight different TCs over the western North Pacific in 2002 have been examined. The 4DVAR assimilation of these satellite-derived wind observations leads to appreciable improvements in the track forecasts, with average reductions in track error of ∼5% at 12 h, 12% at 24 h, 10% at 36 h, and 7% at 48 h. Preliminary results suggest that the improvement depends on the quantity of the AMV data available for assimilation.


2014 ◽  
Vol 120 (3-4) ◽  
pp. 587-599 ◽  
Author(s):  
Inderpreet Kaur ◽  
Prashant Kumar ◽  
S. K. Deb ◽  
C. M. Kishtawal ◽  
P. K. Pal ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document