Age variation in the physical properties of oceanic basalts: Implications for crustal formation and evolution

1994 ◽  
Vol 99 (B2) ◽  
pp. 3123-3134 ◽  
Author(s):  
H. Paul Johnson ◽  
Scott W. Semyan
2019 ◽  
Vol 15 (S352) ◽  
pp. 27-32
Author(s):  
Stefano Carniani

AbstractCharacterising primeval galaxies entails the challenging goal of observing galaxies with modest star formation rates (SFR < 100 Mȯyr−1) and approaching the beginning of the reionisation epoch (z > 6). To date a large number of primeval galaxies have been identified thanks to deep near-infrared surveys. However, to further our understanding on the formation and evolution of such primeval objects, we must investigate their nature and physical properties through multi-band spectroscopic observations. Information on dust content, metallicity, interactions with the surrounding environment, and outflows can be obtained with ALMA observations of far-infrared (FIR) lines such as the [Cii] at 158 μm and [Oiii] at 88 μm. Here, we, thus, discuss the recent results unveiled by ALMA observations and present new [Cii] observations of BDF-3299, a star-forming galaxy at z = 7.1 showing a spatial and spectral offset between the rest-frame UV and the FIR lines emission.


2019 ◽  
Vol 622 ◽  
pp. A103 ◽  
Author(s):  
M. Boquien ◽  
D. Burgarella ◽  
Y. Roehlly ◽  
V. Buat ◽  
L. Ciesla ◽  
...  

Context. Measuring how the physical properties of galaxies change across cosmic times is essential to understand galaxy formation and evolution. With the advent of numerous ground-based and space-borne instruments launched over the past few decades we now have exquisite multi-wavelength observations of galaxies from the far-ultraviolet (FUV) to the radio domain. To tap into this mine of data and obtain new insight into the formation and evolution of galaxies, it is essential that we are able to extract information from their spectral energy distribution (SED). Aims. We present a completely new implementation of Code Investigating GALaxy Emission (CIGALE). Written in python, its main aims are to easily and efficiently model the FUV to radio spectrum of galaxies and estimate their physical properties such as star formation rate, attenuation, dust luminosity, stellar mass, and many other physical quantities. Methods. To compute the spectral models, CIGALE builds composite stellar populations from simple stellar populations combined with highly flexible star formation histories, calculates the emission from gas ionised by massive stars, and attenuates both the stars and the ionised gas with a highly flexible attenuation curve. Based on an energy balance principle, the absorbed energy is then re-emitted by the dust in the mid- and far-infrared domains while thermal and non-thermal components are also included, extending the spectrum far into the radio range. A large grid of models is then fitted to the data and the physical properties are estimated through the analysis of the likelihood distribution. Results. CIGALE is a versatile and easy-to-use tool that makes full use of the architecture of multi-core computers, building grids of millions of models and analysing samples of thousands of galaxies, both at high speed. Beyond fitting the SEDs of galaxies and parameter estimations, it can also be used as a model-generation tool or serve as a library to build new applications.


2013 ◽  
Vol 8 (S299) ◽  
pp. 285-286
Author(s):  
Yilen Gómez Maqueo Chew ◽  
Francesca Faedi ◽  
Leslie Hebb ◽  
Don Pollacco ◽  
Keivan Stassun ◽  
...  

AbstractThe Homogeneous Study of Transiting Systems (HoSTS) will derive a consistent and homogeneous set of both the stellar and planetary physical properties for a large sample of bright transiting planetary systems with confirmed planetary masses and measured radii. Our resulting catalogs of the fundamental properties of these bright planets and their host stars will enable us to explore empirical correlations that will lead to a better understanding of planetary formation and evolution. We present our pilot study of the planet-hosting star WASP-13, and the framework of our project which will allow for the identification of true relationships among the physical properties of the systems from any systematics.


2015 ◽  
Vol 10 (S314) ◽  
pp. 213-219
Author(s):  
G. Chauvin

AbstractWith the development of high contrast imaging techniques and instruments, vast efforts have been devoted during the past decades to detect and characterize lighter, cooler and closer companions to nearby stars, and ultimately image new planetary systems. Complementary to other planet-hunting techniques, this approach has opened a new astrophysical window to study the physical properties and the formation mechanisms of brown dwarfs and planets. In this review, I will briefly describe the different observing techniques and strategies used, the main samples of targeted nearby stars, finally the main results obtained so far about exoplanet discoveries characterization of their physical properties, and study of their occurrence and possible formation and evolution mechanisms.


Galaxies ◽  
2019 ◽  
Vol 7 (2) ◽  
pp. 56
Author(s):  
Gabriella De Lucia

Previous chapters of this issue have focused on the formation and evolution of cosmic structures under the influence of gravity alone. In order to make a close link between theoretical models of structure formation and observational data, it is necessary to consider the gas-dynamical and radiative processes that drive the evolution of the baryonic components of dark matter halos. These processes cover many orders of magnitude in physical sizes and time-scales and are entangled in a complex network of actions, back-reactions, and self-regulations. In addition, our understanding of them is far from being complete, even when viewed in isolation. This chapter provides a brief review of the techniques that are commonly used to link the physical properties of galaxies with the dark matter halos in which they reside. I discuss the main features of these methods, as well as their aims, limits, and complementarities.


2006 ◽  
Vol 2 (S238) ◽  
pp. 51-58 ◽  
Author(s):  
Martin J. Rees ◽  
Marta Volonteri

AbstractSupermassive black holes are nowadays believed to reside in most local galaxies. Observations have revealed us vast information on the population of local and distant black holes, but the detailed physical properties of these dark massive objects are still to be proven. Accretion of gas and black hole mergers play a fundamental role in determining the two parameters defining a black hole: mass and spin. We briefly review here the basic properties of the population of supermassive black holes, focusing on the still mysterious formation of the first massive black holes, and their evolution from early times to now.


2020 ◽  
Author(s):  
Vatsal Panwar ◽  
Jean-Michel Désert ◽  
Kamen Todorov ◽  
Jacob Bean ◽  
Catherine Huitson ◽  
...  

&lt;p&gt;We present a comparative exoplanetology program of a broad sample of transiting gas giant exoplanet atmospheres using a multi-wavelength ground-based survey. The survey comprises optical and near-infrared spectrophotometric observations with Gemini/GMOS and Keck/MOSFIRE respectively. By observing transits and eclipses of an ensemble of close-in gas giants spanning a range of varying bulk and stellar host properties, and using a consistent methodology for modeling systematics and stellar activity, we put constraints on the presence and properties of clouds, alkali metals, and molecular absorbers in their atmospheres. Combining these results with observations from other observatories (TESS, HST, and Spitzer), we probe the overall properties of close-in giant exoplanet atmospheres, including their metallicity, using multiple tracers across the wide wavelength range. Characterizing the bulk chemical and physical properties of the whole sample helps to constrain the formation and evolution histories of these planets. We also discuss the opportunities of low-resolution spectroscopy observations of exoplanet atmospheres in the JWST era.&lt;/p&gt;


2013 ◽  
Vol 560 ◽  
pp. A51 ◽  
Author(s):  
V. Zh. Adibekyan ◽  
P. Figueira ◽  
N. C. Santos ◽  
A. Mortier ◽  
C. Mordasini ◽  
...  

1976 ◽  
Vol 32 ◽  
pp. 365-377 ◽  
Author(s):  
B. Hauck
Keyword(s):  

The Ap stars are numerous - the photometric systems tool It would be very tedious to review in detail all that which is in the literature concerning the photometry of the Ap stars. In my opinion it is necessary to examine the problem of the photometric properties of the Ap stars by considering first of all the possibility of deriving some physical properties for the Ap stars, or of detecting new ones. My talk today is prepared in this spirit. The classification by means of photoelectric photometric systems is at the present time very well established for many systems, such as UBV, uvbyβ, Vilnius, Geneva and DDO systems. Details and methods of classification can be found in Golay (1974) or in the proceedings of the Albany Colloquium edited by Philip and Hayes (1975).


Author(s):  
Frederick A. Murphy ◽  
Alyne K. Harrison ◽  
Sylvia G. Whitfield

The bullet-shaped viruses are currently classified together on the basis of similarities in virion morphology and physical properties. Biologically and ecologically the member viruses are extremely diverse. In searching for further bases for making comparisons of these agents, the nature of host cell infection, both in vivo and in cultured cells, has been explored by thin-section electron microscopy.


Sign in / Sign up

Export Citation Format

Share Document