Scattered light and accuracy of the cross-section measurements of weak absorptions: Gas and liquid phase UV absorption cross sections of CH3CFCl2

1993 ◽  
Vol 98 (D11) ◽  
pp. 20467 ◽  
Author(s):  
A. Fahr ◽  
W. Braun ◽  
M. J. Kurylo
2021 ◽  
pp. 000370282199044
Author(s):  
Wubin Weng ◽  
Shen Li ◽  
Marcus Aldén ◽  
Zhongshan Li

Ammonia (NH3) is regarded as an important nitrogen oxides (NOx) precursor and also as an effective reductant for NOx removal in energy utilization through combustion, and it has recently become an attractive non-carbon alternative fuel. To have a better understanding of thermochemical properties of NH3, accurate in situ detection of NH3 in high temperature environments is desirable. Ultraviolet (UV) absorption spectroscopy is a feasible technique. To achieve quantitative measurements, spectrally resolved UV absorption cross-sections of NH3 in hot gas environments at different temperatures from 295 K to 590 K were experimentally measured for the first time. Based on the experimental results, vibrational constants of NH3 were determined and used for the calculation of the absorption cross-section of NH3 at high temperatures above 590 K using the PGOPHER software. The investigated UV spectra covered the range of wavelengths from 190 nm to 230 nm, where spectral structures of the [Formula: see text] transition of NH3 in the umbrella bending mode, v2, were recognized. The absorption cross-section was found to decrease at higher temperatures. For example, the absorption cross-section peak of the (6, 0) vibrational band of NH3 decreases from ∼2 × 10−17 to ∼0.5 × 10−17 cm2/molecule with the increase of temperature from 295 K to 1570 K. Using the obtained absorption cross-section, in situ nonintrusive quantification of NH3 in different hot gas environments was achieved with a detection limit varying from below 10 parts per million (ppm) to around 200 ppm as temperature increased from 295 K to 1570 K. The quantitative measurement was applied to an experimental investigation of NH3 combustion process. The concentrations of NH3 and nitric oxide (NO) in the post flame zone of NH3–methane (CH4)–air premixed flames at different equivalence ratios were measured.


2021 ◽  
Author(s):  
Baseerat Romshoo ◽  
Thomas Müller ◽  
Sascha Pfeifer ◽  
Jorge Saturno ◽  
Andreas Nowak ◽  
...  

Abstract. The formation of black carbon fractal aggregates (BCFAs) from combustion and subsequent aging involves several stages resulting in modifications of particle size, morphology, and composition over time. To understand and quantify how each of these modifications influences the BC radiative forcing, the radiative properties of BCFAs are modelled. Owing to the high computational time involved in numerical modelling, there are some gaps in terms of data coverage and knowledge regarding how radiative properties of coated BCFAs vary over the range of different factors (size, shape, and composition). This investigation bridged those gaps by following a state-of-the-art description scheme of BCFAs based on morphology, composition, and wavelength. The BCFAs radiative properties were investigated as a function of the radius of the primary particle (ao), fractal dimension (Df), fraction of organics (forganics), wavelength (λ), and mobility diameter (Dmob). The radiative properties are calculated using the multiple sphere T-matrix (MSTM) method. Amongst size, morphology, and composition, all the radiative properties showed the highest variability with changing size. The cross-sections varied from 0.0001 μm2 to 0.1 μm2 for BCFA Dmob ranging from 24 nm to 810 nm. After size or Dmob, the absorption cross-section (Cabs) and BC mass absorption cross-section (MACBC) showed the highest sensitivity towards composition or forganics, whereas the asymmetry parameter (g) showed higher dependence on morphology, which is represented by Df. The Ångstrom absorption exponent varied from 1.06 up to 3.6 and increases with the fraction of organics (forganics). The values of the absorption enhancement factor (Eλ) were found between 1.01 and 3.28 in the visible spectrum. The Eλ was derived from Mie calculations for coated volume equivalent spheres, and from MSTM for coated BCFAs. Mie calculated enhancement factors were found to be larger by a factor of 1.1 to 1.5 than their corresponding values calculated from the MSTM method. It is shown that radiative forcings are highly sensitive towards modifications in morphology and composition. The black carbon radiative forcing ΔFTOA (Wm−2) decreases up to 61 % as the BCFA becomes more compact in morphology. Whereas, there is a decrease of > 50 % in ΔFTOA as the organic content of the particle increase up to 90 %. Based on our results, which showed a significant effect of coating and morphology on the BC radiative properties, a parametrization scheme for radiative properties of BC fractal aggregates was developed, which is applicable for modelling, ambient, and laboratory-based BC studies. The parameterization scheme for the cross-sections (extinction, absorption, and scattering), single scattering albedo (SSA), and asymmetry parameter (g) of pure and coated BCFAs as a function of Dmob were derived from tabulated results of the MSTM method. Spanning over an extensive parameter space, the developed parametrization scheme showed promisingly high accuracy up to 98 % for the cross-sections, 97 % for single scattering albedos (SSA), and 82 % for asymmetry parameter (g).


Absorption cross-sections for oxygen in the region 1670 to 1360 Å, corresponding to the process O 2 3 Ʃ g - + hv → O( 3 P ) + O( 1 D ), have been measured. The cross-section has a maximum value of 1⋅81 x 10 -17 cm 2 at 1450 Å and falls to half-value at 1567 and 1370 Å. The paper includes an account of technical methods of quantitative absorption spectrophotometry in this part of the vacuum ultra- violet.


2010 ◽  
Vol 10 (13) ◽  
pp. 6137-6149 ◽  
Author(s):  
N. Rontu Carlon ◽  
D. K. Papanastasiou ◽  
E. L. Fleming ◽  
C. H. Jackman ◽  
P. A. Newman ◽  
...  

Abstract. Absorption cross sections of nitrous oxide (N2O) and carbon tetrachloride (CCl4) are reported at five atomic UV lines (184.95, 202.548, 206.200, 213.857, and 228.8 nm) at temperatures in the range 210–350 K. In addition, UV absorption spectra of CCl4 are reported between 200–235 nm as a function of temperature (225–350 K). The results from this work are critically compared with results from earlier studies. For N2O, the present results are in good agreement with the current JPL recommendation enabling a reduction in the estimated uncertainty in the N2O atmospheric photolysis rate. For CCl4, the present cross section results are systematically greater than the current recommendation at the reduced temperatures most relevant to stratospheric photolysis. The new cross sections result in a 5–7% increase in the modeled CCl4 photolysis loss, and a slight decrease in the stratospheric lifetime, from 51 to 50 years, for present day conditions. The corresponding changes in modeled inorganic chlorine and ozone in the stratosphere are quite small. A CCl4 cross section parameterization for use in atmospheric model calculations is presented.


2010 ◽  
Vol 10 (4) ◽  
pp. 11047-11080
Author(s):  
N. Rontu Carlon ◽  
D. K. Papanastasiou ◽  
E. L. Fleming ◽  
C. H. Jackman ◽  
P. A. Newman ◽  
...  

Abstract. Absorption cross sections of nitrous oxide (N2O) and carbon tetrachloride (CCl4) are reported at five atomic UV lines (184.95, 202.548, 206.200, 213.857, and 228.8 nm) at temperatures in the range 210–350 K. In addition, UV absorption spectra of CCl4 are reported between 200–235 nm as a function of temperature (225–350 K). The results from this work are critically compared with results from earlier studies. For N2O, the present results are in good agreement with the current JPL recommendation enabling a reduction in the estimated uncertainty in the N2O atmospheric photolysis rate. For CCl4, the present cross section results are systematically greater than the current recommendation at the reduced temperatures most relevant to stratospheric photolysis. The new cross sections result in a 5–7% increase in the modeled CCl4 photolysis loss, and a slight decrease in the stratospheric lifetime, from 51 to 50 years, for present day conditions. The corresponding changes in modeled inorganic chlorine and ozone in the stratosphere are quite small. A CCl4 cross section parameterization for use in atmospheric model calculations is presented.


2018 ◽  
Vol 72 (9) ◽  
pp. 1388-1395 ◽  
Author(s):  
Wubin Weng ◽  
Tomas Leffler ◽  
Christian Brackmann ◽  
Marcus Aldén ◽  
Zhongshan Li

Spectrally resolved ultraviolet (UV) absorption cross-sections of gas-phase sodium chloride (NaCl), potassium hydroxide (KOH), and sodium hydroxide (NaOH) were measured, for the first time, in hot flue gases at different temperatures. Homogenous gas-phase NaCl, KCl (potassium chloride), NaOH, and KOH at temperatures 1200 K, 1400 K, 1600 K, and 1850 K were prepared in the post-flame zone of laminar flames by seeding nebulized droplets out of aqueous solution of corresponding alkali species. The amount of droplets seeded into the flame was kept constant, so the relative concentration of different alkali species can be derived. The broadband UV absorption cross-section of KCl vapor reported by Leffler et al. was adopted to derive the absorption cross-section curves of NaCl, NaOH, and KOH with the corresponding measured spectrally resolved absorbance spectra. No significant changes in the spectral structures in the absorption cross-sections were found as the temperature varied between 1200 K and 1850 K, except for NaOH at around 320 nm. The difference between the absorption spectral curves of alkali chlorides and hydroxides is significant at wavelengths above 300 nm, which thus can be used to distinguish and obtain the concentrations of alkali chlorides and hydroxides in the broadband UV absorption measurements.


The work of multilayer glass structures for central and eccentric compression and bending are considered. The substantiation of the chosen research topic is made. The description and features of laminated glass for the structures investigated, their characteristics are presented. The analysis of the results obtained when testing for compression, compression with bending, simple bending of models of columns, beams, samples of laminated glass was made. Overview of the types and nature of destruction of the models are presented, diagrams of material operation are constructed, average values of the resistance of the cross-sections of samples are obtained, the table of destructive loads is generated. The need for development of a set of rules and guidelines for the design of glass structures, including laminated glass, for bearing elements, as well as standards for testing, rules for assessing the strength, stiffness, crack resistance and methods for determining the strength of control samples is emphasized. It is established that the strength properties of glass depend on the type of applied load and vary widely, and significantly lower than the corresponding normative values of the strength of heat-strengthened glass. The effect of the connecting polymeric material and manufacturing technology of laminated glass on the strength of the structure is also shown. The experimental values of the elastic modulus are different in different directions of the cross section and in the direction perpendicular to the glass layers are two times less than along the glass layers.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Roman N. Lee ◽  
Alexey A. Lyubyakin ◽  
Vyacheslav A. Stotsky

Abstract Using modern multiloop calculation methods, we derive the analytical expressions for the total cross sections of the processes e−γ →$$ {e}^{-}X\overline{X} $$ e − X X ¯ with X = μ, γ or e at arbitrary energies. For the first two processes our results are expressed via classical polylogarithms. The cross section of e−γ → e−e−e+ is represented as a one-fold integral of complete elliptic integral K and logarithms. Using our results, we calculate the threshold and high-energy asymptotics and compare them with available results.


Author(s):  
Georges Griso ◽  
Larysa Khilkova ◽  
Julia Orlik ◽  
Olena Sivak

AbstractIn this paper, we study the asymptotic behavior of an $\varepsilon $ ε -periodic 3D stable structure made of beams of circular cross-section of radius $r$ r when the periodicity parameter $\varepsilon $ ε and the ratio ${r/\varepsilon }$ r / ε simultaneously tend to 0. The analysis is performed within the frame of linear elasticity theory and it is based on the known decomposition of the beam displacements into a beam centerline displacement, a small rotation of the cross-sections and a warping (the deformation of the cross-sections). This decomposition allows to obtain Korn type inequalities. We introduce two unfolding operators, one for the homogenization of the set of beam centerlines and another for the dimension reduction of the beams. The limit homogenized problem is still a linear elastic, second order PDE.


Sign in / Sign up

Export Citation Format

Share Document