Antarctic coastal stratus clouds: Microstructure and acidity

Author(s):  
V. K. Saxena ◽  
R. H. Ruggiero
Keyword(s):  
2008 ◽  
Vol 21 (18) ◽  
pp. 4859-4878 ◽  
Author(s):  
Minghua Zhang ◽  
Christopher Bretherton

Abstract This study investigates the physical mechanism of low cloud feedback in the Community Atmospheric Model, version 3 (CAM3) through idealized single-column model (SCM) experiments over the subtropical eastern oceans. Negative cloud feedback is simulated from stratus and stratocumulus that is consistent with previous diagnostics of cloud feedbacks in CAM3 and its predecessor versions. The feedback occurs through the interaction of a suite of parameterized processes rather than from any single process. It is caused by the larger amount of in-cloud liquid water in stratus clouds from convective sources, and longer lifetimes of these clouds in a warmer climate through their interaction with boundary layer turbulence. Thermodynamic effects are found to dominate the negative cloud feedback in the model. The dynamic effect of weaker subsidence in a warmer climate also contributes to the negative cloud feedback, but with about one-quarter of the magnitude of the thermodynamic effect, owing to increased low-level convection in a warmer climate.


2013 ◽  
Vol 26 (21) ◽  
pp. 8378-8391 ◽  
Author(s):  
Yi Zhang ◽  
Rucong Yu ◽  
Jian Li ◽  
Weihua Yuan ◽  
Minghua Zhang

Abstract Given the large discrepancies that exist in climate models for shortwave cloud forcing over eastern China (EC), the dynamic (vertical motion and horizontal circulation) and thermodynamic (stability) relations of stratus clouds and the associated cloud radiative forcing in the cold season are examined. Unlike the stratus clouds over the southeastern Pacific Ocean (as a representative of marine boundary stratus), where thermodynamic forcing plays a primary role, the stratus clouds over EC are affected by both dynamic and thermodynamic factors. The Tibetan Plateau (TP)-forced low-level large-scale lifting and high stability over EC favor the accumulation of abundant saturated moist air, which contributes to the formation of stratus clouds. The TP slows down the westerly overflow through a frictional effect, resulting in midlevel divergence, and forces the low-level surrounding flows, resulting in convergence. Both midlevel divergence and low-level convergence sustain a rising motion and vertical water vapor transport over EC. The surface cold air is advected from the Siberian high by the surrounding northerly flow, causing low-level cooling. The cooling effect is enhanced by the blocking of the YunGui Plateau. The southwesterly wind carrying warm, moist air from the east Bay of Bengal is uplifted by the HengDuan Mountains via topographical forcing; the midtropospheric westerly flow further advects the warm air downstream of the TP, moistening and warming the middle troposphere on the lee side of the TP. The low-level cooling and midlevel warming together increase the stability. The favorable dynamic and thermodynamic large-scale environment allows for the formation of stratus clouds over EC during the cold season.


1957 ◽  
pp. 86-111
Author(s):  
H. J. Aufm Kampe ◽  
J. J. Kelly ◽  
H. K. Weickmann
Keyword(s):  

2021 ◽  
Author(s):  
Sebastien P. Bigorre ◽  
Robert A. Weller ◽  
Byron Blomquist ◽  
Benjamin Pietro ◽  
Emerson Hasbrouck ◽  
...  

The Ocean Reference Station at 20°S, 85°W under the stratus clouds west of northern Chile is being maintained to provide ongoing climate-quality records of surface meteorology, air-sea fluxes of heat, freshwater, and momentum, and of upper ocean temperature, salinity, and velocity variability. The Stratus Ocean Reference Station (ORS Stratus) is supported by the National Oceanic and Atmospheric Administration’s (NOAA) Climate Observation Program. It is recovered and redeployed annually, with past cruises that have come between October and May. This cruise was conducted on the NOAA research vessel Ronald H. Brown. During the 2017 cruise on the Ronald H. Brown to the ORS Stratus site, the primary activities were the recovery of the previous (Stratus 15) WHOI surface mooring, deployment of the new Stratus 16 WHOI surface mooring, in-situ calibration of the buoy meteorological sensors by comparison with instrumentation installed on the ship, CTD casts near the moorings. Surface drifters and ARGO floats were also launched along the track.


2020 ◽  
Author(s):  
Antti Ruuskanen ◽  
Sami Romakkaniemi ◽  
Harri Kokkola ◽  
Antti Arola ◽  
Santtu Mikkonen ◽  
...  

Abstract. Long term statistics of atmospheric aerosol and especially cloud scavenging were studied at the Puijo measurement station in Kuopio, Finland, during October 2010–November 2014. Aerosol size distributions, scattering coefficients at three different wavelengths (450 nm, 550 nm, and 700 nm), and absorption coefficient at wavelength 637 nm were measured with a special inlet system to sample interstitial and total aerosol in clouds. On average, accumulation mode particle concentration was found to be temperature dependent with lowest average concentrations of 200 cm−3 around 0 °C increasing to more than 800 cm−3 for temperatures higher than 20 °C. From the in-cloud measurements, both scattering and absorbing material scavenging efficiencies were observed to have slightly increasing temperature dependence. At 0 °C the efficiencies of scattering and absorbing matter were 0.85 and 0.55 with slopes of 0.005 °C−1 and 0.003 °C−1, respectively. Additionally, scavenging efficiencies were studied as a function of the diameter at which half of the particles are activated into cloud droplets. This analysis indicated that the is a higher fraction of absorbing material, typically black carbon, in smaller sizes so that at least 20–30 % of interstitial particles within clouds consist of absorbing material. In addition, the PM1-inlet revealed that approximately 20 % of absorbing material was observed to reside in particles with ambient diameter larger than ~ 1 µm at relative humidity below 90 %. Similarly, 40 % of scattering material was seen to be in particles larger than 1 µm. Altogether, this dataset provides information on size dependent aerosol composition that can be applied in evaluating how well large-scale aerosol models reproduce aerosol composition, especially with respect to scavenging in stratus clouds.


1977 ◽  
Author(s):  
Chester Wisner ◽  
Leona N. Shaffer

Sign in / Sign up

Export Citation Format

Share Document